ON STEADY THIRD GRADE FLUIDS EQUATIONS

icon

14

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

14

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

ON STEADY THIRD GRADE FLUIDS EQUATIONS ADRIANA VALENTINA BUSUIOC, DRAGOS¸ IFTIMIE AND MARIUS PAICU Abstract. Let ? be a simply connected, bounded, smooth domain of R2 or R3. We consider the equation of steady motion of a third grade fluid in ? with homogeneous Dirichlet boundary conditions. We prove that the monotonicity technique used by Paicu [22] in the full space for unsteady motion allows to obtain the existence of a W 1,40 solution provided that the forcing belongs to W ?1, 43 . The size of the forcing is arbitrary. Key words: Non-Newtonian fluids, third grade fluids. 1. Introduction Fluids of grade three are a subclass of the family of fluids of complexity three for which the constitutive law is given by the formula (1) T = ?pI + ?A+ ?1A2 + ?2A 2 + ?1A3 + ?2(AA2 + A2A) + ?|A| 2A where A1 ? A, A2 and A3 are the first three Rivlin-Ericksen tensors (or rate-of-strain tensors) defined recursively by A = A1 = ?u+ (?u) t, An = A˙n?1 + (?u) tAn?1 + An?1?u, where the dot denotes the material derivative and u is the velocity field. Relation (1) arises when the fluid is assumed incompressible and the constitutive law is polynomial of degree less than 3 in the first three Rivlin-Ericksen tensors.

  • h3 solutions

  • exists ? ?

  • vector fields

  • grade fluids

  • equations involves

  • there exists


Voir Alternate Text

Publié par

Nombre de lectures

47

Langue

English

ONSTEADYTHIRDGRADEFLUIDSEQUATIONSADRIANAVALENTINABUSUIOC,DRAGO¸SIFTIMIEANDMARIUSPAICUAbstract.LetΩbeasimplyconnected,bounded,smoothdomainofR2orR3.WeconsidertheequationofsteadymotionofathirdgradefluidinΩwithhomogeneousDirichletboundaryconditions.WeprovethatthemonotonicitytechniqueusedbyPaicu[22]inthefullspaceforunsteadymotion44,1allowstoobtaintheexistenceofaW0solutionprovidedthattheforcingbelongstoW1,3.Thesizeoftheforcingisarbitrary.Keywords:Non-Newtonianfluids,thirdgradefluids.1.IntroductionFluidsofgradethreeareasubclassofthefamilyoffluidsofcomplexitythreeforwhichtheconstitutivelawisgivenbytheformula(1)T=pI+νA+α1A2+α2A2+β1A3+β2(AA2+A2A)+β|A|2AwhereA1A,A2andA3arethefirstthreeRivlin-Ericksentensors(orrate-of-straintensors)definedrecursivelybyA=A1=ru+(ru)t,An=A˙n1+(ru)tAn1+An1ru,wherethedotdenotesthematerialderivativeanduisthevelocityfield.Relation(1)ariseswhenthefluidisassumedincompressibleandtheconstitutivelawispolynomialofdegreelessthan3inthefirstthreeRivlin-Ericksentensors.Toproveamathematicaltheoryofexistenceanduniquenessofsolutionsfortheconstitutivelaw(1)withnorestrictionsonthematerialcoefficientsν,α1212(otherthantheobviousconditionν0)seemstobeoutofreach.Onecanfindconditionsonthesecoefficientseitherthroughtheoreticalinvestigationsorfromexperimentaldata.TheoreticalconditionswerefoundbyFosdickandRajagopal[16].Theseauthorsperformedathermodynamicstudyanddeducedthatthematerialcoefficientsshouldsatisfytherestrictionsν0101=β2=00and|α1+α2|≤(24νβ)1/2.Unfortunately,experimentaldataseemstobeatoddswiththetheoreticalresults.Indeed,virtuallyallexperimentaldataexhibitsnegativevaluesofα1.Thereasonwhythisapparentcontradictionoccursisbeyondthescopeofthepresentpaper;wereferthereaderto[15,17,19]foradiscussioninvolvingbothpointsofview.Wealsoremarkthatνshouldbepositiveandthatbothsignsofthecoefficientβ(ifβ>0thefluidissaidshearthickeningwhileforβ<0thefluidissaidshearthinning)areobservedinexperimentsalthoughthesignminusforβseemstobemorefrequent,see[25,Fig.7,22,23]and[4,Table6.2-1].Inorderforthemodeltobemathematicallyamenablewewillassumethatβ1=β2=0asin[16]butwewillallowsignsofcoefficientsinagreementwiththeexperimentaldata.Inparticular,α1maybenegativeinourresults(seethestatementsofTheorems1and2belowforthepreciserestrictionsimposedonthecoefficients).WeareconcernedinthisworkwiththesteadymotionofathirdgradefluidinaboundeddomainΩendowedwithhomogeneousDirichletboundaryconditions.Giventheconditionβ1=β2=0,theequationofmotionbecomesν4u+u∙ruα2div(A2)α1div(u∙rA+LtA+AL)βdiv(|A|2A)=f−rp,inΩ,(2)divu=0,inΩ,u=0,onΩ.1
Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text