ar X iv :1 11 2. 60 10 v1 [ ma th. NT ] 27 D ec 20 11 On SA, CA, and GA numbers G. Caveney 7455 North Greenview _426, Chicago, IL 60626, USA E-mail: J.-L. Nicolas Université de Lyon; CNRS; Université Lyon 1; Institut Camille Jordan, Mathématiques, 21 Avenue Claude Bernard, F-69622 Villeurbanne cedex, France E-mail: J. Sondow 209 West 97th Street _6F, New York, NY 10025, USA E-mail: Tel.: +1-646-306-1909 Abstract Gronwall's function G is defined for n > 1 by G(n) = ?(n)n log logn where ?(n) is the sum of the divisors of n. We call an integer N > 1 a GA1 number if N is composite and G(N) ≥ G(N/p) for all prime fac- tors p of N . We say that N is a GA2 number if G(N) ≥ G(aN) for all multiples aN of N . In arXiv 1110.5078, we used Robin's and Gronwall's theorems on G to prove that the Riemann Hypothesis (RH) is true if and only if 4 is the only number that is both GA1 and GA2.
- prime fac
- abstract gronwall's function
- gronwall's theorem
- ga2
- all prime factors
- satisfies lim
- every ga2
- function · superabundant
- sequence a201557
- riemann hypothesis ·