Numerical approximation of data interpolation least squares method

icon

93

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

93

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Chapter 1 Numerical approximation of data : interpolation, least squares method

  • numerical approximation

  • taylor series

  • square method

  • power functions

  • given point

  • functions

  • polynomial function


Voir icon arrow

Publié par

Nombre de lectures

12

Langue

English

Poids de l'ouvrage

1 Mo

Chapter 1
Numerical approximation of data : interpolation, least squares method
1
I. Motivation
Approximation of functions
Evaluation of a function
Which functions (f:RR) can be effectively evaluated in any point ?
Evaluation of a function
Which functions (f:RR) can be effectively evaluated in any point ?
N
the power functions :f(x) =xm, m the p 2x2+
functions : a0+a1x+a
olynomial f(x) =
+amxm ∙ ∙ ∙
Evaluation of a function
Which functions (f:RR) can be effectively evaluated in any point ?
the power functions :f(x) =xm, mN the polynomial functions : f(x) =a0+a1x+a2x2+∙ ∙ ∙+amxm
How can we evaluate other functions in a given point ? for instance :f(x) = cos(x),f(x) = sin(x) exp(x),...
Evaluation of a function
Which functions (f:RR) can be effectively evaluated in any point ?
the power functions :f(x) =xm, mN the polynomial functions : f(x) =a0+a1x+a2x2+∙ ∙ ∙+amxm
How can we evaluate other functions in a given point ? for instance :f(x) = cos(x),f(x) = sin(x) exp(x),...
approximation by a polynomial function : using a Taylor series about the given point, a polynomial having the same values as thesearching function in some close points Lagrange interpolation
Principles of Lagrange interpolation
f(x) = sin(πx)(x2+ 3)
Principles of Lagrange interpolation
f(x) = sin(
πx)(x2+ 3)
4 points on the curve :
(1,4), (1,4), (2,0), (3,12)
Principles of Lagrange interpolation
f(x) = sin(πx)(x
2+ 3)Lagrange interpolating polynomial
4 points on the curve :
(1,4), (1,4), (2,0), (3,12)
Ppolynomial of degree3 satisfying P(1) =4 P(1) =4 P(2) =0 P(3) =12
Voir icon more
Alternate Text