New Calderon-Zygmund decomposition for Sobolev functions N. Badr Institut Camille Jordan Universite Claude Bernard Lyon 1 43 boulevard du 11 Novembre 1918 F-69622 Villeurbanne Cedex F. Bernicot Universite de Paris-Sud F-91405 Orsay Cedex April 21, 2010 Abstract We state a new Calderon-Zygmund decomposition for Sobolev spaces on a dou- bling Riemannian manifold. Our hypotheses are weaker than those of the already known decomposition which used classical Poincare inequalities. Key-words : Calderon-Zygmund decomposition, Sobolev spaces, Poincare inequalities. MSC : 42B20, 46E35. Contents 1 Introduction 2 2 Preliminaries 3 2.1 The doubling property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Classical Poincare inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Estimates for the heat kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.4 The K-method of real interpolation . . . . . . . . . . .
- measure space
- qi ≤
- lipshitz function
- poincare inequalities
- hardy spaces
- poincare inequality
- calderon- zygmund decomposition