New Calderon Zygmund decomposition for Sobolev functions

icon

25

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

25

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

New Calderon-Zygmund decomposition for Sobolev functions N. Badr Institut Camille Jordan Universite Claude Bernard Lyon 1 43 boulevard du 11 Novembre 1918 F-69622 Villeurbanne Cedex F. Bernicot Universite de Paris-Sud F-91405 Orsay Cedex April 21, 2010 Abstract We state a new Calderon-Zygmund decomposition for Sobolev spaces on a dou- bling Riemannian manifold. Our hypotheses are weaker than those of the already known decomposition which used classical Poincare inequalities. Key-words : Calderon-Zygmund decomposition, Sobolev spaces, Poincare inequalities. MSC : 42B20, 46E35. Contents 1 Introduction 2 2 Preliminaries 3 2.1 The doubling property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Classical Poincare inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Estimates for the heat kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.4 The K-method of real interpolation . . . . . . . . . . .

  • measure space

  • qi ≤

  • lipshitz function

  • poincare inequalities

  • hardy spaces

  • poincare inequality

  • calderon- zygmund decomposition


Voir icon arrow

Publié par

Langue

English

NewCalder´on-ZygmunddecompositionforSobolev functions
N. Badr Institut Camille Jordan Universit´eClaudeBernardLyon1 43 boulevard du 11 Novembre 1918 F-69622 Villeurbanne Cedex badr@math.univ-lyon1.fr F. Bernicot Universite´deParis-Sud F-91405 Orsay Cedex frederic.bernicot@math.u-psud.fr April 21, 2010
Abstract
WestateanewCalder´on-ZygmunddecompositionforSobolevspacesonadou-bling Riemannian manifold. Our hypotheses are weaker than those of the already knowndecompositionwhichusedclassicalPoincare´inequalities.
Key-words :s.ieitbolen,Soces,vspaac´roPniuqlaieenitiomposdecomundZ-gy´rnolaedC MSC :42B20, 46E35.
Contents 1 Introduction 2 2 Preliminaries 3 2.1 The doubling property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2ClassicalPoincare´inequality..........................4 2.3 Estimates for the heat kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.4 TheK-method of real interpolation. . . . . . . . . . . . . . . . . . . . . .  6 3NewCalder´on-ZygmunddecompositionsforSobolevfunctions.7 3.1 Decomposition using abstract “oscillation operators” . . . . . . . . . . . . 7 3.2 Application to real Interpolation of Sobolev spaces. . . . . . . . . . . . . . 12 3.3 Homogeneous version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1
4Pseudo-Poincare´inequalitiesandApplications15 4.1TheparticularcaseofPseudo-Poincar´eInequalities............15 4.2 Application to Reverse Riesz transform inequalities. . . . . . . . . . . . . . 21 4.3 Application to Gagliardo-Nirenberg inequalities. . . . . . . . . . . . . . . . 21
1 Introduction ThepurposeofthisarticleistoweakenassumptionsofthealreadyknownCaldero´n-Zygmund decomposition for Sobolev functions. This well-known tool was first stated by P.Auscherin[2].ItexactlycorrespondstotheCalder´on-Zygmunddecompositionina context of Sobolev spaces. Let us briefly recall the ideas of such decomposition. In [34], E. Stein stated this decom-position for Lebesgue spaces as following. Let (X, d, µ) be a space of homogeneous type andp1. Given a functionfLp(X), the decomposition gives a precise way of parti-tioningX oneinto two subsets: wherefis essentially small (bounded inLnorm); the other a countable collection of cubes wherefis essentially large, but where some control of the function is obtained inL1hTsiro.mtstoeldanyZ-no´rednumgcisoasheldCaedat decomposition off, wherefis written as the sum of “good” and “bad” functions, using the above subsets. This decomposition is a basic tool in Harmonic analysis and the study of singular integrals. One of the applications is the following : anL2deunbo-´redlaCdumgyZ-noeratndoporis of weak type (1,1) and soLpbounded for everyp(1,). In [2], P. Auscher extended these ideas for Sobolev spaces. His decomposition is the following: Theorem 1.1Letn1,p[1,)andf∈ D0(Rn)be such thatkrfkLp<. Let α >0 one can find a collection of cubes. Then,(Qi)i, functionsgandbisuch that f=g+Xbi i
and the following properties hold:
krgkLCα, biW10,p(Qi)andZQi |rbi|pp|Qi|, X|Qi| ≤p, iZRn|rf|p X1QiN, i whereCandNdepend only on the dimensionnand onp.
2
Voir icon more
Alternate Text