New Calderon Zygmund decomposition for Sobolev functions

icon

25

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

25

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

New Calderon-Zygmund decomposition for Sobolev functions N. Badr Institut Camille Jordan Universite Claude Bernard Lyon 1 43 boulevard du 11 Novembre 1918 F-69622 Villeurbanne Cedex F. Bernicot Universite de Paris-Sud F-91405 Orsay Cedex April 21, 2010 Abstract We state a new Calderon-Zygmund decomposition for Sobolev spaces on a dou- bling Riemannian manifold. Our hypotheses are weaker than those of the already known decomposition which used classical Poincare inequalities. Key-words : Calderon-Zygmund decomposition, Sobolev spaces, Poincare inequalities. MSC : 42B20, 46E35. Contents 1 Introduction 2 2 Preliminaries 3 2.1 The doubling property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Classical Poincare inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Estimates for the heat kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.4 The K-method of real interpolation . . . . . . . . . . .

  • measure space

  • qi ≤

  • lipshitz function

  • poincare inequalities

  • hardy spaces

  • poincare inequality

  • calderon- zygmund decomposition


Voir Alternate Text

Publié par

Nombre de lectures

6

Langue

English

NewCalder´on-ZygmunddecompositionforSobolev functions
N. Badr Institut Camille Jordan Universit´eClaudeBernardLyon1 43 boulevard du 11 Novembre 1918 F-69622 Villeurbanne Cedex badr@math.univ-lyon1.fr F. Bernicot Universite´deParis-Sud F-91405 Orsay Cedex frederic.bernicot@math.u-psud.fr April 21, 2010
Abstract
WestateanewCalder´on-ZygmunddecompositionforSobolevspacesonadou-bling Riemannian manifold. Our hypotheses are weaker than those of the already knowndecompositionwhichusedclassicalPoincare´inequalities.
Key-words :s.ieitbolen,Soces,vspaac´roPniuqlaieenitiomposdecomundZ-gy´rnolaedC MSC :42B20, 46E35.
Contents 1 Introduction 2 2 Preliminaries 3 2.1 The doubling property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2ClassicalPoincare´inequality..........................4 2.3 Estimates for the heat kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.4 TheK-method of real interpolation. . . . . . . . . . . . . . . . . . . . . .  6 3NewCalder´on-ZygmunddecompositionsforSobolevfunctions.7 3.1 Decomposition using abstract “oscillation operators” . . . . . . . . . . . . 7 3.2 Application to real Interpolation of Sobolev spaces. . . . . . . . . . . . . . 12 3.3 Homogeneous version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1
4Pseudo-Poincare´inequalitiesandApplications15 4.1TheparticularcaseofPseudo-Poincar´eInequalities............15 4.2 Application to Reverse Riesz transform inequalities. . . . . . . . . . . . . . 21 4.3 Application to Gagliardo-Nirenberg inequalities. . . . . . . . . . . . . . . . 21
1 Introduction ThepurposeofthisarticleistoweakenassumptionsofthealreadyknownCaldero´n-Zygmund decomposition for Sobolev functions. This well-known tool was first stated by P.Auscherin[2].ItexactlycorrespondstotheCalder´on-Zygmunddecompositionina context of Sobolev spaces. Let us briefly recall the ideas of such decomposition. In [34], E. Stein stated this decom-position for Lebesgue spaces as following. Let (X, d, µ) be a space of homogeneous type andp1. Given a functionfLp(X), the decomposition gives a precise way of parti-tioningX oneinto two subsets: wherefis essentially small (bounded inLnorm); the other a countable collection of cubes wherefis essentially large, but where some control of the function is obtained inL1hTsiro.mtstoeldanyZ-no´rednumgcisoasheldCaedat decomposition off, wherefis written as the sum of “good” and “bad” functions, using the above subsets. This decomposition is a basic tool in Harmonic analysis and the study of singular integrals. One of the applications is the following : anL2deunbo-´redlaCdumgyZ-noeratndoporis of weak type (1,1) and soLpbounded for everyp(1,). In [2], P. Auscher extended these ideas for Sobolev spaces. His decomposition is the following: Theorem 1.1Letn1,p[1,)andf∈ D0(Rn)be such thatkrfkLp<. Let α >0 one can find a collection of cubes. Then,(Qi)i, functionsgandbisuch that f=g+Xbi i
and the following properties hold:
krgkLCα, biW10,p(Qi)andZQi |rbi|pp|Qi|, X|Qi| ≤p, iZRn|rf|p X1QiN, i whereCandNdepend only on the dimensionnand onp.
2
Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text