Motivation Factorization of cyclotomic polynomials

icon

69

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

69

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Motivation Factorization of cyclotomic polynomials Some steps to abelian extensions Conclusion Factorization of polynomials over finite fields in deterministic polynomial-time Ivan Boyer Doctorant sous la direction de Jean-François Mestre Institut Mathématique de Jussieu AGCT-13 — C.I.R.M. March 15, 2011 I. Boyer Factorization in Fp[X]

  • context schoof's

  • algorithm

  • root probabilistic-algorithms

  • deterministic polynomial

  • motivation factorization

  • doctorant sous la direction

  • polynomials over


Voir icon arrow

Publié par

Nombre de lectures

24

Langue

English

MotivationFactoirazitnofoyclctoicomlypominosSalsemospetbaotaileensinextonclonsCnsuoicaFrirotitazninoI.yeBoFp[X]
Factorization of polynomials over finite fields in deterministicopylimenomial-t
Doctorant sous la direction de Jean-François Mestre Institut Mathématique de Jussieu
AGCT-13 — C.I.R.M. March 15, 2011
Ivan Boyer
IyoB.aFrerotctazi]X
Remark Thedeterministicaspect iscrucial be- everythingin this talk : comes “trivial” in probabilistic time. In the same way, assuming G.R.H. would withdraw some of the interest of the following !
Fn[poiintcaFnoitoitazirovatiMoaislnymotspeoSemyclonofccpoltomisiluCoonnsioncCoxenasnetaotsilebgorithmiorithmAloofasgltnxeSthc.tcepsac
IaFreyoB.tazirotcp[nFniio
IThere are deterministic algorithms inFp[X](egBerlekamp’s algorithm) but exponential in logp. INo deterministic polynomial-time algorithm is known for factorization inFp[X] in degree 2 !. Even IEasy to decide ifaFpis a square (Legendre symbol, or more generally the g.c.d. withxpx) IA lot of literature for square root probabilistic-algorithms, but as for now, we don’t know if it’s aP–problem. IHowever, thanks toSchoof’s algorithm, we can say some-thing indeterministictime.
X]oMizorctFaontivatiilebxenapetsaotsncCosilunstensiocyolotimtaoioncfialsSomecpolynomreoouqrapF.stniioniizatX]SnFp[tiroglasrotcaFmhexntCoonfoochtS
epstmeSolibeoastlopcimotslaimonyonColusitSchntexetsnnaxeoCcnoisnorizationofcyclooMitavitnoaFtcintsooerarquSX].pFhmFaoritsalgoofFn[poiinzitatcrozitaoiinFn[p]X
IThere are deterministic algorithms inFp[X](egBerlekamp’s algorithm) but exponential in logp. INo deterministic polynomial-time algorithm is known for factorization inFp[X]. Even in degree 2 ! IEasy to decide ifaFpis a square (Legendre symbol, or more generally the g.c.d. withxpx) IA lot of literature for square root probabilistic-algorithms, but as for now, we don’t know if it’s aP–problem. IHowever, thanks toSchoof’s algorithm, we can say some-thing indeterministictime.
Ioy.BFaerorct
tivationMoolcpomynloycmitooitacfontcaFziroionstensanexbelitsaotspeoSemaislitorlgsafoochtSxetnoCnoisulcnoCFahmorctatizniio[pFnS]XrauqooretsinFp.
IThere are deterministic algorithms inFp[X](egBerlekamp’s algorithm) but exponential in logp. INo deterministic polynomial-time algorithm is known for factorization inFp[X] in degree 2 !. Even IEasy to decide ifaFpis a square (Legendre symbol, or more generally the g.c.d. withxpx) IA lot of literature for square root probabilistic-algorithms, but as for now, we don’t know if it’s aP–problem. IHowever, thanks toSchoof’s algorithm, we can say some-thing indeterministictime.
]XioninFp[ctorizatB.yoreaFI
pF.reoostniX]SquarioninFp[rotcaFreinoitazi
IThere are deterministic algorithms inFp[X](egBerlekamp’s algorithm) but exponential in logp. INo deterministic polynomial-time algorithm is known for factorization inFp[X]. Even in degree 2 ! IEasy to decide ifaFpis a square (Legendre symbol, or more generally the g.c.d. withxpx) IA lot of literature for square root probabilistic-algorithms, but as for now, we don’t know if it’s aP–problem. IHowever, thanks toSchoof’s algorithm, we can say some-thing indeterministictime.
X]p[nFI.BoypclootimcyoloncfstepSomeialsynomavitoMioatizorctFaontioofasgltnxeSthcctorizatorithmFaxenasnetaotsilebsiluCoonnsioncCo
Voir icon more
Alternate Text