MEROMORPHIC FUNCTIONS BIFURCATION SETS AND FIBRED LINKS

icon

13

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

13

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

MEROMORPHIC FUNCTIONS, BIFURCATION SETS AND FIBRED LINKS ARNAUD BODIN AND ANNE PICHON Abstract. We give a necessary condition for a meromorphic func- tion in several variables to give rise to a Milnor fibration of the local link (respectively of the link at infinity). In the case of two vari- ables we give some necessary and sufficient conditions for the local link (respectively the link at infinity) to be fibred. 1. Introduction A famous result of J. Milnor [11] states that the link f?1(0) ? S2n?1? (0 < ? 1) of a holomorphic germ f : (Cn, 0) ?? (C, 0) is a fibred link and moreover that a fibration is given by the so-called Milnor fibration f |f | : S 2n?1 ? \ f ?1(0) ?? S1. Throughout this paper Sn?1r denotes the sphere with radius r centered at the origin of Rn. The proof of this result has been extended in several directions in order to construct some natural fibrations in other situations of singu- larity theory. In this paper, we focus on two of them : (1) Let f : (Rn+k, 0) ?? (Rk, 0) be a real analytic germ with an isolated critical point at the origin. J. Milnor [11, Chapter 11] proved that for every sufficiently small sphere Sn+k?1? centered at the origin in Rn+k, the complement Sn+k?1? \ Lf of the link Lf = Sn+k?1? ?

  • condition called

  • without common

  • local fibrations

  • isolated

  • p1 such

  • milnor map

  • meromorphic functions


Voir icon arrow

Publié par

Langue

English

MEROMORPHICFUNCTIONS,BIFURCATIONSETSANDFIBREDLINKSARNAUDBODINANDANNEPICHONAbstract.Wegiveanecessaryconditionforameromorphicfunc-tioninseveralvariablestogiverisetoaMilnorfibrationofthelocallink(respectivelyofthelinkatinfinity).Inthecaseoftwovari-ableswegivesomenecessaryandsufficientconditionsforthelocallink(respectivelythelinkatinfinity)tobefibred.1.IntroductionAfamousresultofJ.Milnor[11]statesthatthelinkf1(0)Sε2n1(01)ofaholomorphicgermf:(Cn,0)−→(C,0)isafibredlinkandmoreoverthatafibrationisgivenbytheso-calledMilnorfibration|ff|:Sε2n1\f1(0)−→S1.ThroughoutthispaperSrn1denotesthespherewithradiusrcenteredattheoriginofRn.Theproofofthisresulthasbeenextendedinseveraldirectionsinordertoconstructsomenaturalfibrationsinothersituationsofsingu-laritytheory.Inthispaper,wefocusontwoofthem:(1)Letf:(Rn+k,0)−→(Rk,0)bearealanalyticgermwithanisolatedcriticalpointattheorigin.J.Milnor[11,Chapter11]provedthatforeverysufficientlysmallsphereSεn+k1centeredattheorigininRn+k,thecomplementSεn+k1\LfofthelinkLf=Sεn+k1f1(0)fibresoverthecircle.AspointedoutbyMilnor,thefibrationisnotnecessarilygivenbytheMilnormapf.kfkThisresultcanbeextendedtoarealanalyticgermf:(X,p)−→(Rk,0)withisolatedcriticalvaluesatisfyingasuit-ablestratificationcondition,where(X,p)isagermofrealan-alyticspacewithisolatedsingularityatp([15],Theorem1.1).(2)Anotherdirectiondealswithlinksatinfinity.Letf:Cn−→Cbeapolynomialmap.Thelinkatinfinityassociatedwiththefibref1(0)isdefinedbyLf,=f1(0)S2Rn1forasufficientlylargeradiusR1.In[12],A.Ne´methiandA.ZahariaprovedDate:January29,2007.1
Voir icon more
Alternate Text