Mathematical and Numerical Analysis of some Non Linear P D E 's Problems

icon

88

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

88

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Mathematical and Numerical Analysis of some Non-Linear P.D.E.'s Problems Jean R. Roche Institut Elie Cartan UMR 7502, Nancy-Université, CNRS, INRIA . CALVI INRIA Research Team B.P. 239, 54506 Vandoeuvre les Nancy Cedex, France, e-mail: . MATH AmSud, Lima-2008 Jean R. Roche Non-Linear P.D.E.'s Problems

  • differential geometry

  • equations

  • domain decomposition method

  • fluid-structure problems

  • vlasov-poisson-maxwell equations

  • research team

  • numerical analysis

  • capes - cofecub bilateral


Voir icon arrow

Publié par

Langue

English

Poids de l'ouvrage

2 Mo

Mathematical and Numerical Analysis of some Non-Linear P.D.E.’s Problems
Jean R.
Roche
Institut Elie Cartan UMR 7502, Nancy-Université, CNRS, INRIA . CALVI INRIA Research Team B.P. 239, 54506 Vandoeuvre les Nancy Cedex, France, e-mail: roche@iecn.u-nancy.fr.
MATH AmSud, Lima-2008
Jean R. Roche
Non-Linear P.D.E.’s Problems
I.E.C.N.
TheInstitut Elie Cartan de Nancyis the Pure and Applied Mathematics Laboratory of the three Universities of Nancy: Université Henri Poincaré-Nancy I
Université Nancy 2 Institut National Polytechnique de Lorraine U.M.R. CNRS 7502 and associated to the INRIA Web adress: www.iecn.u-nancy.fr
Jean R. Roche
Non-Linear P.D.E.’s Problems
The Research Teams
Analysis and Complex Geometry Differential Geometry Lie Groups and Harmonic Analysis Number Theory
Probability and Statistics (TOSCA INRIA Research Team) Partial Differential Equations and Applications (CALVI and CORIDA INRIA Research Team)
Jean R. Roche
Non-Linear P.D.E.’s Problems
Partial Differential Equations and Applications
Free boundary problems, shape optimization, inverse problems Non-linear evolution problems, reaction-diffusion systems, asymptotic behavior Control and stabilization of systems governed by PDE’s Integral equations, domain decomposition Fluid-structure problems Vlasov-Poisson-Maxwell equations, applications to plasma physics Previous collaborations with South America : INRIA associated team ANCIF with the University of Chile and a CAPES - COFECUB bilateral agreement with the UFRJ and the LNCC
Jean R. Roche
Non-Linear P.D.E.’s Problems
A domain decomposition method for second order nonlinear equations
Joint work with NourEddine Alaa from the University Cadi Ayyad, Marrakech, Maroc Introduction The aim of this communication is to give a result of existence and present a numerical analysis of weak non-negative solutions for the following quasi-linear elliptic problem in one and two dimensions: u(Aux()x=)0+oGn(x,ΩDu(x)) =F(x,u(x)) +f(x)inΩ,(1)
whereAa second order derivatives operator in oneis dimension and the Laplace operator in two dimensions,G,F are measurable and continuous non negative functions. The functionfis given finite and non negative. The domain ΩRN,N=1,2is open and bounded.
Jean R. Roche
Non-Linear P.D.E.’s Problems
In the one dimensional case we are particularly interested by situations wherefis irregular and where the growth of bothG with respect tou0andFwith respect touare arbitrary. A model problem is the following: in(0,1)(2)
u00(t) +|u0(t)|q=|u(t)|p+f u(0) =u(1) =0
wherep,q1andfMB+(0,1).
Jean R. Roche
Non-Linear P.D.E.’s Problems
In the two dimensional case we assume that the growth ofGis subquadratic. A classical example is the following: u=Δu0(xi)n+Ω|ru(x)|p=|u(x)|q+finΩ(3)
where1<p,q<and
fL1(Ω),f0
Jean R. Roche
Non-Linear P.D.E.’s Problems
Remarks
Whenfproved by in P.L. Lions that ifis regular, it is (2)has a non negative supersolution inW10,then(2)has a solution in W10,TW2,p. Here the supersolution vanish at the boundary. Whenfis irregular andGis subquadratic with respect tou0 namely:
G(t,r)c(g(t) +|r|2),
g(t)L1(0,1),c>0
(4)
Then(2)has a solutionuH01(0,1)if(2)has a supersolution inW1,(0,1). Choquet-Bruhat-Leray, P.L. Lions,Boccardo-Murat-Puel, Bensoussan, Gallouët, Brezis-Strauss, Baras-Pierre, Porretta Wk,p(0,1) ={fLp(0,1)such thatα,|α| ≤k, ∂αfLp(0,1)}. W0k,p(0,1)is the closure ofCc(0,1)inWk,p(0,1).
Jean R. Roche
Non-Linear P.D.E.’s Problems
Voir icon more
Alternate Text