Mass Transportation on surfaces

icon

73

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

73

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Mass Transportation on surfaces Ludovic Rifford Universite de Nice - Sophia Antipolis Ludovic Rifford Mass Transportation on surfaces

  • lebesgue measure

  • optimal transport map

  • any measurable map

  • monge quadratic

  • quadratic cost


Voir icon arrow

Publié par

Langue

English

Poids de l'ouvrage

1 Mo

Mass
Transportation on surfaces
Ludovic Rifford
Universit´edeNice-SophiaAntipolis
uLdoviciRodraMssrTnasportationonsurfaces
oMgnqetransporuadraticRnitnrTssaMdratropsnaudLoRiicov
measurable
R
,
B
onsutiones
Letµ0andµ1beprobability measures with compact supportinRn. We calltransport mapfromµ0toµ1any measurable mapT:RnRnsuch thatT]µ0=µ1, that is µ1(B) =µ0T1(B),BmeasurableRn.
rfac
TheBrenieTrehromeletunocyasi0losbhritpeesnutiswou(mrBneeihToeerumethatµr91)AssrtnamilamtpapsrotsauexiseoptniquT.erusaeerehtneheLthtoctemguesebitno:ψMsRcuthahereisaconvexfuncftsoµmorµot0hT.1rtfoquheraadcctitionortaanspssTrdraMiRovociL?dutyrilaguRen.R.xe.a0µ)x(ψr=)x(Tt
Monge quadratic problem: Study of transport maps T:RnRnwhich minimize thequadratictransport cost Z
se
dµ0(x).
R
|T(x)− |2 x n
usnocafr
oremeineehTrTrBehnoitcnufxevnocaseierThx.Ra0e.x(µ)=)ψrtT(xhthaRsucψ:MicovoRiMardTrsseR.nalugytirduL?rfaces
Monge quadratic problem of transport maps: Study T:RnRnwhich minimize thequadratictransport cost ZRn|T(x)x|2dµ0(x).
Theorem (Brenier ’91) Assume thatµ0is absolutely continuous with respect to the Lebesgue measure. Then there exists a unique optimal transport map for the quadratic cost fromµ0toµ1.
napsroatitnonous
TheBrenimrehToeersnonafrusec
T(x) =rψ(x)µ0a.e. xRn.
Theorem (Brenier ’91) Assume thatµ0is absolutely continuous with respect to the Lebesgue measure. Then there exists a unique optimal transport map for the quadratic cost fromµ0toµ1. There is a convex functionψ:MRsuch that
Monge quadratic problem: Study of transport maps T:RnRnwhich minimize thequadratictransport cost ZR|T(x)x|2dµ0(x). n
ransassTatioportodiv?yuLroMdRciRitaruleg
eoThmreerBereinhTcefaurns
Theorem (Brenier ’91) Assume thatµ0is absolutely continuous with respect to the Lebesgue measure. Then there exists a unique optimal transport map for the quadratic cost fromµ0toµ1. There is a convex functionψ:MRsuch that
Monge quadratic problem: Study of transport maps T:RnRnwhich minimize thequadratictransport cost ZRn|T(x)x|2dµ0(x).
Regularity ?
T(x) =rψ(x)µ0a.e. xRn.
ssnopTsaroiontrtavicRLudodMasior
Contre-exemple
trivial
Ludovic
Rifford
Mass
Transp
ortation
on
surfaces
Voir icon more
Alternate Text