Kernels for Feedback Arc Set In Tournaments

icon

12

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

12

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Kernels for Feedback Arc Set In Tournaments Stephane Bessy? Fedor V. Fomin† Serge Gaspers‡ Christophe Paul? Anthony Perez? Saket Saurabh† Stephan Thomasse? Abstract A tournament T = (V,A) is a directed graph in which there is exactly one arc between every pair of distinct vertices. Given a digraph on n vertices and an integer parameter k, the Feedback Arc Set problem asks whether the given digraph has a set of k arcs whose removal results in an acyclic digraph. The Feedback Arc Set problem restricted to tournaments is known as the k-Feedback Arc Set in Tournaments (k-FAST) problem. In this paper we obtain a linear vertex kernel for k-FAST. That is, we give a polynomial time algorithm which given an input instance T to k-FAST obtains an equivalent instance T ? on O(k) vertices. In fact, given any fixed > 0, the kernelized instance has at most (2 + )k vertices. Our result improves the previous known bound of O(k2) on the kernel size for k-FAST. Our kernelization algorithm solves the problem on a subclass of tournaments in polynomial time and uses a known polynomial time approximation scheme for k- FAST. 1 Introduction Given a directed graph G = (V,A) on n vertices and an integer parameter k, the Feedback Arc Set problem asks whether the given digraph has a set of k arcs whose removal results in an acyclic directed graph.

  • let d?

  • parameterized complexity

  • time algorithm

  • minimum sized feedback

  • feedback arc

  • using only

  • has

  • algorithm solves

  • polynomial time


Voir icon arrow

Publié par

Langue

English

KernelsforFeedbackArcSetInTournamentsSte´phaneBessyFedorV.FominSergeGaspersChristophePaulAnthonyPerezSaketSaurabhSte´phanThomasse´AbstractAtournamentT=(V,A)isadirectedgraphinwhichthereisexactlyonearcbetweeneverypairofdistinctvertices.Givenadigraphonnverticesandanintegerparameterk,theFeedbackArcSetproblemaskswhetherthegivendigraphhasasetofkarcswhoseremovalresultsinanacyclicdigraph.TheFeedbackArcSetproblemrestrictedtotournamentsisknownasthek-FeedbackArcSetinTournaments(k-FAST)problem.Inthispaperweobtainalinearvertexkernelfork-FAST.Thatis,wegiveapolynomialtimealgorithmwhichgivenaninputinstanceTtok-FASTobtainsanequivalentinstanceT0onO(k)vertices.Infact,givenanyfixed>0,thekernelizedinstancehasatmost(2+)kvertices.OurresultimprovesthepreviousknownboundofO(k2)onthekernelsizefork-FAST.Ourkernelizationalgorithmsolvestheproblemonasubclassoftournamentsinpolynomialtimeandusesaknownpolynomialtimeapproximationschemefork-.TSAF1IntroductionGivenadirectedgraphG=(V,A)onnverticesandanintegerparameterk,theFeedbackArcSetproblemaskswhetherthegivendigraphhasasetofkarcswhoseremovalresultsinanacyclicdirectedgraph.Inthispaper,weconsiderthisprobleminaspecialclassofdirectedgraphs,tournaments.AtournamentT=(V,A)isadirectedgraphinwhichthereisexactlyonedirectedarcbetweeneverypairofvertices.Moreformallytheproblemweconsiderisdefinedasfollows.k-FeedbackArcSetinTournaments(k-FAST):GivenatournamentT=(V,A)andapositiveintegerk,doesthereexistasubsetFAofatmostkarcswhoseremovalmakesTacyclic.Intheweightedversionofk-FAST,wearealsogivenintegerweights(eachweightisatleastone)onthearcsandtheobjectiveistofindafeedbackarcsetofweightatmostk.Thisproblemiscalledk-WeightedFeedbackArcSetinTournaments(k-WFAST).LIRMM–Universite´deMontpellier2,CNRS,161rueAda,34392Montpellier,France.{bessy|paul|perez|thomasse}@lirmm.frDepartmentofInformatics,UniversityofBergen,N-5020Bergen,Norway.{fedor.fomin|saket.saurabh}@ii.uib.noCentrodeModelamientoMatema´tico,UniversidaddeChile,8370459SantiagodeChile.sgaspers@dim.uchile.cl1
Voir icon more
Alternate Text