J. Math. Pures Appl. 80, 2 (2001) 153–175 ? 2001 Éditions scientifiques et médicales Elsevier SAS. All rights reserved S0021-7824(00)01182-X/FLA CENTRAL LIMIT THEOREM FOR THE GEODESIC FLOW ASSOCIATED WITH A KLEINIAN GROUP, CASE ? > d/2 N. ENRIQUEZ a,1, J. FRANCHI b,2, Y. LE JAN c,3 a Laboratoire de Probabilités de Paris 6, 4 place Jussieu, tour 56, 3ème étage, 75252 Paris cedex 05, France b Université Louis Pasteur, I.R.M.A., 7 rue René Descartes, 67084 Strasbourg cedex, France c Université Paris Sud, Mathématiques, Bâtiment 425, 91405 Orsay, France Manuscript received 1 June 2000 ABSTRACT. – Let ? be a geometrically finite Kleinian group, relative to the hyperbolic space H=Hd+1, and let ? denote the Hausdorff dimension of its limit set, that we suppose here strictly larger than d/2. We prove a central limit theorem for the geodesic flow on the manifold M := ? \H, with respect to the Patterson–Sullivan measure. The argument uses the ground-state diffusion and its canonical lift to the frame bundle, for which the existence of a potential operator is proved. ? 2001 Éditions scientifiques et médicales Elsevier SAS Keywords: Geodesic flow, Hyperbolic manifold of infinite volume, Diffusion process, Stable foliation, Spectral gap, Patterson–Sullivan measure, Central limit theorem.
- geodesic flow
- patterson–sullivan measure
- group ?
- when ?
- see also
- euclidian rotations
- stable horocycle
- state diffusion
- smooth function