Introduction Using CryptoVerif Proof technique Example proof Conclusion

icon

52

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

52

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Introduction Using CryptoVerif Proof technique Example proof Conclusion CryptoVerif: A Computationally Sound Mechanized Prover for Cryptographic Protocols Bruno Blanchet CNRS, Ecole Normale Superieure, INRIA, Paris May 2010 Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif May 2010 1 / 47

  • cryptographic primitives

  • cryptoverif proof technique

  • proofs can

  • bitstrings cryptographic primitives

  • approach allows

  • direct approach

  • dolev-yao model

  • automatic proof


Voir icon arrow

Publié par

Nombre de lectures

19

Langue

English

IntroductionUsignrCpyoteVirPforteofnicheEqumpxarpelCfoolcnooisunBoalrBnuNS,IRS,Et(CNnchefireVotpyrC)AIRN
Bruno Blanchet
May 2010
CryptoVerif: A Computationally Sound Mechanized Prover for Cryptographic Protocols
´ CNRS,EcoleNormaleSupe´rieure,INRIA,Paris
7/40101y2Ma
tnIpyoteVirPforfoetroductionUsingCrlcnoCfoonoisueEqunichprlempxa)ArCpyoteVirMfyaet(CNRS,ENS,INRIurBlBonhcna
Two models for security protocols: Computational model: messages are bitstrings cryptographic primitives are functions from bitstrings to bitstrings the adversary is a probabilistic polynomial-time Turing machine Proofs are done manually. Formal model(so-called “Dolev-Yao model”): cryptographic primitives are ideal blackboxes messages are terms built from the cryptographic primitives the adversary is restricted to use only the primitives Proofs can be done automatically. Our goal: achieveautomatic provabilityunder the realisticcomputational assumptions.
Introduction
74/20102
ofConcluampleproisnoCNt(,ERS,INSIANRnurBalBoehcn0103/47
Introduction
Two approaches for the automatic proof of cryptographic protocols in a computational model: Indirect approach: 1) Make a Dolev-Yao proof. 2) Use a theorem that shows the soundness of the Dolev-Yao approach with respect to the computational model. Pioneered by Abadi and Rogaway; pursued by many others. Direct approach: Design automatic tools for proving protocols in a computational model. Approach pioneered by Laud.
C)yrtpVorefiaM2yhniqueExProoftectpVorefisUniCgyrucodontitrIn
,SNE,SNIIR)ArCpyrunoBlanchet(CNR
Advantages and drawbacks
74
The indirect approach allows more reuse of previous work, but it has limitations: Hypotheseshave to be added to make sure that the computational and Dolev-Yao models coincide. Theallowed cryptographic primitivesare often limited, and only ideal, not very practical primitives can be used. Using the Dolev-Yao model is actually a (big)detour; The computational definitions of primitives fit the computational security properties to prove. They do not fit the Dolev-Yao model. We decided to focus on the direct approach.
VetofMri20ay4/10trodInonUsuctisiluncCoofroepplnoifProVerryptingCxEmaqieucenhootfB
echniqueifProoftyrtpVorenosUniCgsiluonfoorcnoCmaxEpelpnIitcudortrBcnalBonu01y2/405
An automatic prover
We have implemented anautomatic prover: provessecrecyandcorrespondenceproperties. provides agenericmethod for specifying properties of cryptographic primitiveswhich handles symmetric encryption, MACs, public-key encryption, signatures, hash functions, CDH, DDH, . . . works forNsessions(polynomial in the security parameter), with an active adversary. gives a bound on theprobabilityof an attack (exact security).
7AIC)yrtpVorefiaMhet(CNRS,ENS,INR
Voir icon more
Alternate Text