INTRODUCTION TO DE BRANGES–ROVNYAK SPACES

icon

115

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

115

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus


  • cours - matière potentielle : m2r


Universite LYON I cours de M2R INTRODUCTION TO DE BRANGES–ROVNYAK SPACES Emmanuel Fricain —-2008-2009—

  • aa? ≤

  • bb?

  • bounded operators between

  • classical hardy spaces

  • hilbert spaces

  • h1 ??

  • invariant subspaces

  • toeplitz operators

  • a?x


Voir Alternate Text

Publié par

Nombre de lectures

9

Langue

English

Universite LYON I
cours de M2R
INTRODUCTION TO DE
BRANGES{ROVNYAK SPACES
Emmanuel Fricain
|-2008-2009|iiContents
Preface iv
1 Hilbert space operators 1
1.1 Douglas’ factorization theorem . . . . . . . . . . . . . . . . . . . 1
1.2 The square root of a positive operator . . . . . . . . . . . . . . . 2
1.3 Partial isometries and the polar decomposition . . . . . . . . . . 5
1.4 Reproducing kernel Hilbert spaces . . . . . . . . . . . . . . . . . 9
1.5 Fredholm theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 The operator of multiplication by the independant variable on
2L (). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 Analytic functions on the open unit disc 17
2.1 The Poisson integral . . . . . . . . . . . . . . . . . . . . . . . . . 17
p2.2 Classical Hardy spaces H . . . . . . . . . . . . . . . . . . . . . . 18
22.3 The shift operator on H . . . . . . . . . . . . . . . . . . . . . . 22
2.4 The F. M. Riesz Theorem . . . . . . . . . . . . . . . . . . . . . . 24
22.5 Generalized Hardy spaces H () . . . . . . . . . . . . . . . . . . 26
2.6 The Cauchy integral . . . . . . . . . . . . . . . . . . . . . . . . . 27
3 Toeplitz operators 31
3.1 The multiplication operator M . . . . . . . . . . . . . . . . . . . 31’
3.2 The norm of T . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32’
3.3 The adjoint of T . . . . . . . . . . . . . . . . . . . . . . . . . . . 34’
3.4 Toeplitz operators with (anti-)analytic symbols . . . . . . . . . . 36
3.5 Composition of Toeplitz operators . . . . . . . . . . . . . . . . . 37
3.6 The compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.7 The operator K . . . . . . . . . . . . . . . . . . . . . . . . . . . 39’
23.8 Toeplitz operators on generalized Hardy spaces H () . . . . . . 41
4 The spacesM(A) andH(A) 45
4.1 The spaceM(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Contractive inclusion ofM(A) inM(B) . . . . . . . . . . . . . . 49
4.3 Linear functionals onM(A) . . . . . . . . . . . . . . . . . . . . . 51
4.4 The complementary spaceH(A) . . . . . . . . . . . . . . . . . . 52
iii4.5 The Halmos intertwining theorem . . . . . . . . . . . . . . . . . . 54
4.6 The Lotto{Sarason theorem . . . . . . . . . . . . . . . . . . . . . 55
4.7 The overlapping space . . . . . . . . . . . . . . . . . . . . . . . . 57
4.8 Decomposition ofH(A) . . . . . . . . . . . . . . . . . . . . . . . 58
4.9 of H . . . . . . . . . . . . . . . . . . . . . . . . . 62
25 Hilbert spaces in H 65
5.1 The spaceH(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Model subspaces K . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 The reproducing kernel ofH(b) . . . . . . . . . . . . . . . . . . . 68
5.4 H(b) andH(b) as invariant subspaces . . . . . . . . . . . . . . . . 69
5.5 The operator X . . . . . . . . . . . . . . . . . . . . . . . . . . . 71b
5.6 Integral representation ofH(b) . . . . . . . . . . . . . . . . . . . 72
5.7 Integral representation ofH(b) . . . . . . . . . . . . . . . . . . . 73
5.8 Multipliers ofH(b) . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6 Applications ofH(b) spaces 79
6.1 Comparison of measures . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Angular derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3 Caratheodory’s theorem . . . . . . . . . . . . . . . . . . . . . . . 85
7 The nonextreme case ofH(b) spaces 91
7.1 First properties ofH(b) . . . . . . . . . . . . . . . . . . . . . . . 91
7.2 The polynomials are dense inH(b) . . . . . . . . . . . . . . . . . 94
7.3 The shift onH(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.4 The multipliers ofH(b) . . . . . . . . . . . . . . . . . . . . . . . 96
7.5 A result of completeness . . . . . . . . . . . . . . . . . . . . . . . 97
8 Appendix 101
8.1 Extreme points of a convex set in a Banach space . . . . . . . . . 101
1 18.2 points of the unit ball of H and H . . . . . . . . . . 104
8.3 A theorem of Helson{Szeg o . . . . . . . . . . . . . . . . . . . . . 107
Bibliography 109Chapter 1
Hilbert space operators
1.1 Douglas’ factorization theorem
Let A : H ! H and B : H ! H be bounded operators between Hilbert1 2
spaces. In certain applications, we need to know when there is a contraction
C :H ! H such that A =BC holds.1 2
Figure 1.1: The factorization A =BC
If such a contraction exists, then
BB AA =BB BCC B =B (I CC )B 0:
Douglas showed that the conditionAA BB is also su cient for the existence
of C.
Theorem1.1 (Douglas). LetH;H andH be Hilbert spaces and letA :H !1 2 1
H and B : H ! H be bounded operators. Then there is a contraction C :2
H ! H such that A =BC if and only if AA BB .1 2
Proof. The necessity was shown above. The other direction is a bit more deli-
cate. Suppose that AA BB . Hence
kA xk kB xk ; (x2H): (1.1)H H1 2
This inequality enables us to de ne an operator from the range of B to the
range of A . Let
D :R(B ) ! R (A )
B x 7 ! A x:
If an element inR(B ) has two representations, i.e. z = B x = B y, then
B (x y) = 0. Hence, by (1.1),A (x y) = 0. In other words,Dz =A x =A y
is well de ned. Moreover,
kD(B x)k kB xk ; (x2H):H H1 2
1Therefore, by continuity, D extends to a contraction from the closure ofR(B )
inH intoH . In the last step of extension, we extend D to a contraction from2 1
H to H by de ning2 1
?D(z) = 0; (z2R(B ) ):
According to our primary de nition, the contraction D satis es DB = A .
Hence A =BD . Take C =D .
Exercises
Exercise 1.1.1. Let H ;H and H be Hilbert spaces, let C :H ! H be1 2 3 1 2
a contraction, and let A :H ! H be a bounded operator. Show that2 3
A (I CC )A 0;
where I :H ! H is the identity operator.2 2
1.2 The square root of a positive operator
If B2L(H) and we de ne A = BB , then certainly A is a positive operator.
Our goal is to show that every positive operator is obtained that way. First we
need two preliminary lemmas.
Lemma1.2. LetA;B2L(H) be positive andAB =BA. ThenAB is positive.
2Proof. If TS =ST , T and S positive, it is clear that TS is positive. Without
loss of generality assume thatkBk 1. Let B =B, and let0
2
B =B B ; (n 0):n+1 n n
Then the relations
2 2B =B (I B ) +B (I B )n+1 n n nn
and
2I B = (I B ) +Bn+1 n n
imply that
0B I; (n 0):n
Thus,
nX
2B =B B B; (n 0): (1.2)n+1k
k=0Therefore, for each x2H and n 0,
n n nX X X
2 2kB xk = hB x;B xi = hB x;xik k k k
k=0 k=0 k=0
nX
2= h B x;xihBx;xi:k
k=0
P1 2Thus kB xk <1. In particular, lim B x = 0 and, by (1.2),k n!1 nk=0
nX
2lim B x =Bx:kn!1
k=0
Pn 2Since A B is positive, we conclude that AB is also positive.k=0 k
Lemma 1.3. Let A ;A ; ;B2L(H) be self adjoint. Suppose that1 2
A A =A A ; A B =BA ; (m;n 1);n m m n n n
and that
A A B; (n 1):n n+1
Then there is A2L(H), A self adjoint, such that
Ax = lim A x; (x2H):n
n!1
Proof. Let C =B A , n 1. Hencen n
0C C ; (n 1): (1.3)n+1 n
Then, by Lemma 1.2,
2 20C C C C ; (mn):n mn m
In the rst place, for each x2H,
kC xkkC xk; (mn): (1.4)n m
Since (kC xk) is a decreasing sequence of positive numbers, we concluden n1
that
lim kC xkn
n!1
exists. Secondly,
2 2 2kC x C xk kC xk k C xk ; (mn);m n m n
and thus (C x) is a Cauchy sequence. Letn n1
Cx = lim C x; (x2H):n
n!1Clearly C is linear. Moreover, by (1.4), we have
kCxk = lim kC xkkC xk; x2H;:n 1
n!+1
which proves that C2L(H) andkCkkCk. Since C is self adjoint, C is1 n
also self adjoint. Put A =B C.
Theorem 1.4. Let A 2 L(H) be positive. Then there is a unique positive
2operator B2L(H) such that A =B .
Proof. Without loss of generality assume thatkAk 1. Put B =A and0
2A BnB =B + ; (n 0):n+1 n
2
Clearly 0B I. Moreover, by Lemma 1.2, the relations0
2(I B ) + (I A)n
I B =n+1
2
and
(I B ) + (I B )n n 1
B B = (B B )n+1 n n n 1
2
imply that
0B B I; (n 0):n n+1
Hence, by Lemma 1.3, there is B2L(H), B positive, with
Bx = lim B x; (x2H):n
n!1
But
2B x AxnB x =B x + ; (n 0);n+1 n
2
2which immediately gives B x =Ax.
It remains to show that B is unique. Suppose that there is C 2L(H),
2 2 2C positive, such that C = A. Then AC = C C = CC = CA. Therefore,
p(A)C =Cp(A), wherep is any polynomial. In particular,B C =CB ,n 0,n n
and thus BC =CB. Fix x2H, and let y = (B C)x. Then
2 2h(B +C)y;yi =h(B C )x;yi = 0:
Since B and C are positive operators, we thus have
hBy;yi =hCy;yi = 0:
But these assumptions implyBy =Cy = 0. For example, to verify thatBy = 0,
1=2based on the rst paragraph, we know that B exists. Hence
1=2 2 1=2 1=2kB yk =hB y;B yi =hBy;yi = 0:
1=2Thus B y = 0 which implies By = 0. Finally,
2 2k(B C)xk =h(B C)x; (B C)xi =h(B C) x;xi =h(B C)y;xi = 0:
Therefore, B =C.The operator B whose unique existence was guaranteed by the preceding the-
1=2orem is called the square root of A and is denoted by A . The following two
results were also implicitly obtained in the proof of Theorem 1.4.
Corollary 1.5. Let A2L(H) be positive. Then there is a there is a sequence
of real polynomial (p ) with p (0) = 0 such thatn n1 n
1=2A x = lim p (A)x; (x2H):n
n!1
Corollary 1.6. Let A2L(H) be positive, and let x2H. Suppose that
hAx;xi = 0:
Then Ax =

Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text