Introduction Current in quasi free systems

icon

54

pages

icon

Français

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

54

pages

icon

Français

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Introduction Current in quasi-free systems Transport vs Spectrum of ?∆ + V Transport for the 1D Schrodinger equation via quasi-free systems (Collaboration with V. Jaksic) L. Bruneau Univ. Cergy-Pontoise Grenoble, December 1st, 2010 L. Bruneau Transport for the 1D Schrodinger equation via quasi-free systems

  • transport exponent

  • pp spectrum

  • ?x ?

  • transport

  • cergy pontoise

  • huge amount

  • free systems

  • bruneau transport


Voir icon arrow

Publié par

Langue

Français

Poids de l'ouvrage

1 Mo

IntroductionCurertnniuqsa-irfeestsysTemnsrartpopSsvrtcefomuV+ΔurenLB.orthortfanspauTreregnido¨rhcSD1ei-asquianvioatqueefrstsysem
L. Bruneau
Grenoble, December 1st, 2010
Transportforthe1DSchr¨odingerequationvia quasi-free systems (Collaboration with V. Jaksic)
Univ. Cergy-Pontoise
transport/localization
pour
H
=Δ +V.
tcoiCnruertnniuqIntrodutropsnarrtcepSsveefri-assTemstsyΔ+VumofBruneauTL.uaeqerngdi¨ohrScD1ehtroftropsnar
2
litterature
the
In
Dynamical vs spectral
of
notions
temsesysf-erauisivqaitno
tnIsTemnsrartpoSpvsrtcefomuV+ΔanyDroductionCurrentniuqsa-irfeeystsarleptcvlssimacLB.urenuarTnaps
In the litterature 2 notions of transport/localization pourH=Δ +V.
Dynamical: behaviour ofhψthXinψtiast→ ∞and where ψt=eitHψandhXi(1 +X2)12. = Localization if supthψthXinψti ≤Cnand transport if hψthXinψti ≃Cntnβ(n)withβ(n)>0 (transport exponent).
emsystsrfeesa-iaiuqnvioatquregeinod¨rhcSD1ehtroftro
docunIrtuCrritnonquaentireessi-frTsmetsyvtropsnaructpesSVDΔ+fmolaspvstrecamynalicgeinqurechDSodr¨sauqrf-ioitaaivn.BruneauLftroht1erTnapsrotsmeeeyss
Dynamical: behaviour ofhψthXinψtiast→ ∞and where ψt=eitHψandhXi= (1 +X2)12. Localization if supthψthXinψti ≤Cnand transport if hψthXinψti ≃Cntnβ(n)withβ(n)>0 (transport exponent). Spectral:sppp(H) is associated to the notion of localization and spac(H) to the one of transport.
In the litterature 2 notions of transport/localization pourH=Δ +V.
vsspectrals
In the litterature 2 notions of transport/localization pourH=Δ +V. Dynamical: behaviour ofhψthXinψtiast→ ∞and where ψt=eitHψandhXi= (1 +X2)12 . Localization if supthψthXinψti ≤Cnand transport if hψthXinψti ≃Cntnβ(n)withβ(n)>0 (transport exponent). Spectral:sppp(H) is associated to the notion of localization and spac(H) to the one of transport. Between these 2 notions there are links butno equivalence: Esppp(H) andψEan eigenfunction, thenhψtEhXinψtEi=C: dynamical loc. dynamical loc.pp spectrum (RAGE theorem). ψ∈ Hac:1TR0ThψthXinψtidtCnTnd[Guarneri ’93]. pp spectrum6⇒dynamical loc., see e.g. [GKT,JSS,DJLS]. Huge amount of litterature on the subject.
stemeesy-irfuqsavnaitaoihcSDdo¨regniuqeranTrorsportfe1thLB.urenuamofΔ+VDynamicalnapsrovtSseptcur-fsiesreteysTrmsnoitrruCitneauqnoducIntr
Voir icon more
Alternate Text