Introduction Calculus Proof technique Example proof Conclusion

icon

39

pages

icon

Français

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

39

pages

icon

Français

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Introduction Calculus Proof technique Example proof Conclusion CryptoVerif: A Computationally Sound Mechanized Prover for Cryptographic Protocols Bruno Blanchet CNRS, Ecole Normale Superieure, INRIA, Paris April 2009 Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif April 2009 1 / 38

  • cryptographic primitives

  • proofs can

  • proof technique

  • bitstrings cryptographic primitives

  • approach allows

  • direct approach

  • dolev-yao model

  • automatic proof


Voir icon arrow

Publié par

Nombre de lectures

25

Langue

Français

IntroductionCaluculPsorfoethcineEqumpxaprlefCoolcnooisuneh(talcnnuBorBIA)C,INR,ENSCNRS2lirpAfireVotpyr
Bruno Blanchet
April 2009
CryptoVerif: A Computationally Sound Mechanized Prover for Cryptographic Protocols
´ CNRS,EcoleNormaleSupe´rieure,INRIA,Paris
8/39100
tnIudorfoethcinuqEeaxpmctionCalculusPronfCooprleiousclonAfrpli0290/283
Introduction
INRIA)CryptoVerihcnaC(te,SRN,SNEruBBlno
Two models for security protocols: Computational model: messages are bitstrings cryptographic primitives are functions from bitstrings to bitstrings the adversary is a probabilistic polynomial-time Turing machine Proofs are done manually. Formal model(so-called “Dolev-Yao model”): cryptographic primitives are ideal blackboxes messages are terms built from the cryptographic primitives the adversary is restricted to use only the primitives Proofs can be done automatically. Our goal: achieveautomatic provabilityunder the realisticcomputational assumptions.
oneh(talcnnuBorBptryeroVApifl2riSRNCSNE,RNI,C)AI00393/8
Two approaches for the automatic proof of cryptographic protocols in a computational model: Indirect approach: 1) Make a Dolev-Yao proof. 2) Use a theorem that shows the soundness of the Dolev-Yao approach with respect to the computational model. Pioneered by Abadi and Rogaway; pursued by many others. Direct approach: Design automatic tools for proving protocols in a computational model. Approach pioneered by Laud.
Introduction
ConclusipleproofqieuxEmaootfcenhullcPrustiucCaonnIdort
Voir icon more
Alternate Text