Institut Girard Desargues , , ON THE EXISTENCE OF NONSMOOTH CONTROL-LYAPUNOV FUNCTIONS IN THE SENSE OF GENERALIZED GRADIENTS LUDOVIC RIFFORD Abstract. Let x˙ = f(x, u) be a general control system; the existence of a smooth control-Lyapunov function does not imply the existence of a continuous stabilizing feedback. However, we show that it allows us to design a stabilizing feedback in the Krasovskii (or Filippov) sense. More- over, we recall a definition of a control-Lyapunov function in the case of a nonsmooth function; it is based on Clarke's generalized gradient. Finally, with an inedite proof we prove that the existence of this type of control-Lyapunov function is equivalent to the existence of a classical control-Lyapunov function. This property leads to a generalization of a result on the systems with integrator. Abstract. Soit x˙ = f(x, u) un systeme commande ; l'existence d'une fonction Lyapunov lisse associee a ce systeme ne garantit generalement pas l'existence d'un retour d'etat stabilisant continu. Cependant, nous montrons qu'elle conduit toujours a la construction d'un retour d'etat stabilisant au sens de Krasovskii (ou de Filippov). En outre, nous rap- pelons une definition de fonction Lyapunov dans le cas d'une fonction seulement Lipschitzienne; celle-ci est caracterisee par une condition sur les gradients generalises de Clarke.
- brockett's condition
- closed- loop system
- lyapunov function
- also measurable then
- conditions hold
- x˙
- gradient
- clarke's generalized