Identification of the pointwise Holder exponent of Generalized Mutifractional Brownian Motion

icon

16

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

16

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Identification of the pointwise Hölder exponent of Generalized Multifractional Brownian Motion Antoine Ayache USTL (Lille) Cassino December 2010 A.Ayache (USTL) Identification of GMBM Cassino December 2010 1 / 16

  • positive deterministic constant

  • generalized quadratic

  • course lim

  • quadratic variations

  • h?1 v˜


Voir icon arrow

Publié par

Langue

English

(USTL)Identicationroferthe2010pMoint16wiseDecembH?lyderofexpDecemonent1ofche@math.univ-lille1.fGeneralizedCassinoMultifractionalerBroA.AwnianacheMotionIdenticationAntoineGMBACassinoybache2010USTL/(Lille)Antoine.Aya! ( ) 2N
[ ; ] [ ; ] ( ; ) k k = ( )
( ) = ( )!+1
! ( ) C (R) [ ; ]2N
b b() = jj = () = jj
( )b b b () = ( ) ( )
f ( )g ( ) 2N2[ ; ]
Z +1 X
b c( ) = () ():
( )+ =jjR =
LipschitzwhenandbonnLetnthehof2nLetXmotivation03rameterandisandefit01ductionW1-Introthint10ofwhenhndhassetsequenceebWn;1fotrwidehatfalldntnof10andthvalues,with.functionsfGMBMnpa0dened1nwhichnn0LipdenedfXsucht0aA.Aeache1Identicationn10GMBeCassinowitharbitraanbh2010ryfthat:2f16nnn1valuesOin,.sequencea.1f(1)2yn(USTL)inoflimMsatisesDecemferb2/2n
P 8 2 [ ; ] : ( ) = ( ) = ;
f ( )g2[ ; ]
f ( )g2[ ; ]
)
b ( );
( ) ( )
= ;:::; [ ] f ( )g 2[ ; ]
=!+1
!
( ( )) 2N
NTdiscretizedrd,Nt;Jaaconditionyexp0ybof1ewnnmaandy1exhibiXt0verydenotesirregula0rthisbhatehavionrb.,shoofAwisenaturalpquestionofwhichtcan0b1etaddresseddiscretizationislimthat,1whethertor,rseenot,theinthatthistcase,Cassinoit2010isXppossible0toonentconstructH?ldereenointbNXahaspathNtheitAt1thattaachestatisticalthatestimatotrhereofNRecallthe16mesh,hcoursetN1taqquXtX0.eInconvergentseminathewerwillthistisunderreticamildspthatphA.AmeansachewhichIdenticationGMBatbaagivensequence,panswointtotquestion,(theostallyrtineaking)gositive.fromythe(USTL)observationofofMXDecemter/3(2)pXrticulaIneitchtheA.Aca(1987)seonofAbFBMedseveralandapptheseroachesonehaveCassinoalreadyTbTheeenopedropbosedus.inapporiationsrderVtoIdenticationestimate2010the,HurstandpaWrameterroachHy(recallandthatthatthisypa(1994)rameteofrinterestequalsrsttowtheispVointthewiseGeneralizedH?lderriationsexpacheonentGMBofbFBM/).ryLetFlandrin,usaqqumentionVsome(1998):ofavelets.theseappappdeveloproaches.bHallGuyandnWL?onoandodevelopdb(1994):IstasBoLandxwilldimenseion;paHall,rWtooTheoofdtandoFroacheseuebaservergerQuadratic(1994):anumbandersecondofoncrossings;QuadraticL?vyaV?hel.andyP(USTL)eltierof(1994):MmaximumDecemlikereliho4o16d;f ( = )g = ;:::;
!
X +e = :
=
e
! +1
e
e = + ;
! +1
11cpNNre0HNositiveBdiscretizedH0VVka.s.,:strictly1ministicNNQ);BHH2(VlogklogN(4)riationHaOne2pVdeter(3)constantGuywhenQuadraticof.aytherefo(USTL)NofNM1DecemperN5p16N1NFBM.BVconverges,Ntocovergeswhena.s.observestoaonA.AandacheL?onIdenticationhaveGMBshoCassinownbthat2010N/2H< < = p
= < <
2 ( ; )
e
X + +
= + :
=
BNriationand1aNGaussianthelimit)rophoQuadraticlBdsNfostandarandthetheQuadraticbVfoaariations;2wheni.e.3rremof40Theo,HhaveLimitto1,VaVnonastandaardexample,CentralNLimit0Theowhenremconvergence:(i.e.ofwithNaforateallofvaluesconvergenHceaN4,232IstasHLangandpaosednonreplaceGaussQuadraticianalimitH)NholdsyfoGeneralizedrVtheriation,QuadraticrVVarateriations.2Inp(Central0rdHconvergencepwithA.ANache2IdenticationHGMBpof1BeedSpCassinoHbp2010/o2rder(5)toyobtain(USTL)aofstandaMrdDecemCentralerLimit6Theo16rem!
!
dmakingcalizinguseyofandGeneralizedsettingQuadraticerVaaedriations,stationaIstaswnianandofLang16haveQuadraticconstructedBenassi,asymhaveptoestimationttheicallyinoMultifractionalrmal(MBM).estimato(USTL)rsDecemof7H?lderloexpGeneralizedonentsVofriations,aCohenwideIstasclassextendofthisstationamethorytoincrementsnonGaussianrypncrementsroofcessesBro,MotionwhichA.AincludesacheFBM.IdenticationByGMBMCassinoLater,bin20101998,/by2 [ ; ]
f ( = )g = ;:::
f ( )g2[ ; ]
!
( )
2 ( ; ) W ( )
n o

Voir icon more
Alternate Text