Hyperreflexivity of Toeplitz analytic operators on the polydisc

icon

52

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

52

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Hyperreflexivity of Toeplitz analytic operators VLADIMIR MÜLLER and MAREK PTAK Hyperreflexivity of Toeplitz analytic operators on the polydisc VLADIMIR MÜLLER and MAREK PTAK Lille, May 31 – June 4, 2010 VLADIMIR MÜLLER and MAREK PTAK Hyperreflexivity of Toeplitz analytic operators

  • complex hilbert space

  • alg lata ?

  • vladimir müller

  • reflexive df??

  • alg lata

  • operators

  • toeplitz analytic


Voir icon arrow

Publié par

Langue

English

VLADIMIRMÜLLERandMAREKPTAK

Lille,May31June4,2010

HyperreexivityofToeplitzanalyticoperators
onthepolydisc

srotarepocitylanaztilpeoTfoytivixeerrepyHKATPKERAMdnaRELLÜMRIMIDALVKATPKERAMdnaRELLÜMRIMIDALVsrotarepocitylanaztilpeoTfoytivixeerrepyH
srotarepocitylanaztilpeoTfoytivixeerrepyHKATPKERAMdnaRELLÜMRIMIDALVT
=
{
T
ϕ
:
ϕ

L

(
T
)
}A
(
D
n
)=
{
T
ϕ
:
ϕ

H

(
D
n
)
}
T
=
n
{
A

B
(
H
2
(
D
n
)):
S
j

AS
j
=
A
,
j
=
1
,...,
n
}
A
(
D
)=
A
(
S
1
,...,
S
n
)

(
S
i
f
)(
z
)=
z
i
f
(
z
)
for
f

H
2
(
D
n
)
,
i
=
1
,...,
n

T
unitcircle,
D
unitdisc,
D
n
polydisc,
B
n
unitball
H
2
(
D
n
)

L
2
(
T
n
)
,
H

(
D
n
)

L

(
T
n
)
P
H
2
(
D
n
)
:
L
2
(
T
n
)

H
2
(
D
n
)
ϕ

L

(
T
n
)
T
ϕ
f
=
P
H
2
(
D
n
)
(
ϕ
f
)
for
f

H
2
(
D
n
)

Toeplitzoperatorsonthepolydisc

KATPKERAMdnaRELLÜMRIMIDALVsrotarepocitylanaztilpeoTfoytivixeerrepyH
KATPKERAMdnaRELLÜMRIMIDALVsrotarepocitylanaztilpeoTfoytivixeerrepyHT
=
{
T
ϕ
:
ϕ

L

(
T
)
}A
(
D
n
)=
{
T
ϕ
:
ϕ

H

(
D
n
)
}
T
=
n
{
A

B
(
H
2
(
D
n
)):
S
j

AS
j
=
A
,
j
=
1
,...,
n
}
A
(
D
)=
A
(
S
1
,...,
S
n
)

(
S
i
f
)(
z
)=
z
i
f
(
z
)
for
f

H
2
(
D
n
)
,
i
=
1
,...,
n

T
unitcircle,
D
unitdisc,
D
n
polydisc,
B
n
unitball
H
2
(
D
n
)

L
2
(
T
n
)
,
H

(
D
n
)

L

(
T
n
)
P
H
2
(
D
n
)
:
L
2
(
T
n
)

H
2
(
D
n
)
ϕ

L

(
T
n
)
T
ϕ
f
=
P
H
2
(
D
n
)
(
ϕ
f
)
for
f

H
2
(
D
n
)

Toeplitzoperatorsonthepolydisc

srotarepocitylanaztilpeoTfoytivixeerrepyHKATPKERAMdnaRELLÜMRIMIDALV
srotarepocitylanaztilpeoTfoytivixeerrepyHKATPKERAMdnaRELLÜMRIMIDALVKATPKERAMdnaRELLÜMRIMIDALVsroT
=
{
T
ϕ
:
ϕ

L

(
T
)
}A
(
D
n
)=
{
T
ϕ
:
ϕ

H

(
D
n
)
}
T
=
n
{
A

B
(
H
2
(
D
n
)):
S
j

AS
j
=
A
,
j
=
1
,...,
n
}
A
(
D
)=
A
(
S
1
,...,
S
n
)

t(
S
i
f
)(
z
)=
z
i
f
(
z
)
for
f

H
2
(
D
n
)
,
i
=
1
,...,
n

aT
unitcircle,
D
unitdisc,
D
n
polydisc,
B
n
unitball
H
2
(
D
n
)

L
2
(
T
n
)
,
H

(
D
n
)

L

(
T
n
)
P
H
2
(
D
n
)
:
L
2
(
T
n
)

H
2
(
D
n
)
ϕ

L

(
T
n
)
T
ϕ
f
=
P
H
2
(
D
n
)
(
ϕ
f
)
for
f

H
2
(
D
n
)

rToeplitzoperatorsonthepolydisc

epocitylanaztilpeoTfoytivixeerrepyH
arepocitylanaztilpeoTfoytivixeerrepyH(Sarason,Halmos)
fdA
is
reexive
⇐⇒A
=
AlgLat

Lat
A
=
{L⊂H
:
A
L⊂L
forall
A
∈A}
AlgLat
A
=
{
B

L
(
H
):
Lat
A⊂
Lat
B
}
A⊂
AlgLat
A⊂
L
(
H
)

H
complexHilbertspace
B
(
H
)
algebraofallboundedlinearoperators
A⊂
B
(
H
)
subalgebrawith
I

Reexivity

srotarepocitylanaztilpeoTfoytivixeerrepyHKATPKERAMdnaRELLÜMRIMIDALVAKATPKERAMdnaRELLÜMRIMIDALVsrot
srotarepocitylanaztilpeoTfoytivixeerrepyHKATPKERAMdnaRELLÜMRIMIDALVAKATPK(Sarason,Halmos)
fdA
is
reexive
⇐⇒A
=
AlgLat

ELat
A
=
{L⊂H
:
A
L⊂L
forall
A
∈A}
AlgLat
A
=
{
B

L
(
H
):
Lat
A⊂
Lat
B
}
A⊂
AlgLat
A⊂
L
(
H
)

RH
complexHilbertspace
B
(
H
)
algebraofallboundedlinearoperators
A⊂
B
(
H
)
subalgebrawith
I

AReexivity

MdnaRELLÜMRIMIDALVsrotarepocitylanaztilpeoTfoytivixeerrepyH
KATPKERAMdnaRELLÜMRIMIDALVsrotarepocitylanaztilpeoTfoytivixeerrepyH(Sarason,Halmos)
fdA
is
reexive
⇐⇒A
=
AlgLat

Lat
A
=
{L⊂H
:
A
L⊂L
forall
A
∈A}
AlgLat
A
=
{
B

L
(
H
):
Lat
A⊂
Lat
B
}
A⊂
AlgLat
A⊂
L
(
H
)

H
complexHilbertspace
B
(
H
)
algebraofallboundedlinearoperators
A⊂
B
(
H
)
subalgebrawith
I

Reexivity

srotarepocitylanaztilpeoTfoytivixeerrepyHKATPKERAMdnaRELLÜMRIMIDALVA
srotarepocitylanaztilpeoTfoytivixeerrepyHKATPKERAMdnaRELLÜMRIMIDALVThesmallestconstant
k
iscalledthe
hyperreexiveconstant
and
denotedby
κ
A
.

α
(
A
,
A
)=
sup
k
P

AP
k
:
P

Lat
A
=
=
sup
|h
Ax
,
y
i|
:
k
x
k
=
k
y
k
=
1
,
h
Tx
,
y
i
=
0forall
T
∈A

A
is
hyperreexive
iffthereis
k
suchthatdist
(
A
,
A
)
6
k
α
(
A
,
A
)

Denition(Arveson)

d
α
i
(
s
A
t
,
(
A
A
,
)
A
6
)
d
=
isitn
(
f
A
{
,
k
A
A
)

T
k
:
T
∈A}

α
(
A
,
A
)=
sup
d
(
Ax
,
A
x
):
x
∈H
,
k
x
k
=
1

A⊂
B
(
H
)
A

B
(
H

Hyperreexivity

)KATPKERAMdnaRELLÜMRIMIDALVsrotarepocitylanaztilpeoTfoytivixeerrepyH
)KATPKERAMdnaRELLÜMRIMIDALVsrotarepocitylanaztilpeoTfoytivixeerrepyHThesmallestconstant
k
iscalledthe
hyperreexiveconstant
and
denotedby
κ
A
.

α
(
A
,
A
)=
sup
k
P

AP
k
:
P

Lat
A
=
=
sup
|h
Ax
,
y
i|
:
k
x
k
=
k
y
k
=
1
,
h
Tx
,
y
i
=
0forall
T
∈A

A
is
hyperreexive
iffthereis
k
suchthatdist
(
A
,
A
)
6
k
α
(
A
,
A
)

Denition(Arveson)

d
α
i
(
s
A
t
,
(
A
A
,
)
A
6
)
d
=
isitn
(
f
A
{
,
k
A
A
)

T
k
:
T
∈A}

α
(
A
,
A
)=
sup
d<

Voir icon more
Alternate Text