31
pages
Français
Documents
2001
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
31
pages
Français
Documents
2001
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
es
HABILIT
2001
A
MEYER
TION
A
P
DIRIGER
GINIBRE
DES
le
RECHER
Jean-Mic
CHES
COHEN
UNIVERSITE
Jean
P
atric
ARIS
o
6
an
Sp
comp
de
ecialit
BONY
Alb
e
CAZENA
Math
k
Yv
ematiques
orteurs
pr
GERARD
KENIG
esen
ctobre
t
dev
t
ee
jury
par
os
F
e
abrice
Messieurs
Planc
hel
hon
Jean-Yv
Sujet
CHEMIN
SOLUTIONS
ert
PEU
Thierry
REGULIERES
VE
POUR
atric
DES
GERARD
EQUA
GINIBRE
TIONS
es
D'EV
Rapp
OLUTION
P
SEMI-LINEAIRES
k
Souten
Jean
ue
Carlos
le
10p
Remerciemen
su
ts
ses
Je
haleureuse.
souhaite
que
tout
d
d'ab
ord
e
remercier
man
Yv
Stalk
es
Daub
Mey
Au-del
er,
s
qui
doit
apr
Num
mem
es
s'est
a
ens
v
Isab
oir
eaucoup
guid
Apr
Program
e
de
mes
domaine
pre-
lors
miers
pas
r
dans
et
la
rec
v
herc
Mada
he,
une
a
don
toujours
p
manifest
serait
v
e
e,
un
ah
in
le
t
tra
elopp
er
th
^
accueilli
et
Computational
sans
de
cesse
renouv
collab
el
our
m'orien
e
diciles.
p
Princeton
our
scien
mon
stim
dev
a
enir,
a
bien
pr
au-del
j'ai
a
au
des
tes
seules
saisis
math
Pironneau
que
ematiques.
oratoire,
Qu'il
ee
trouv
et
e
e
ici
emen
le
vid
t
pas.
ete
emoignage
our
de
tra
mon
encore
amiti
Mattingly
e.
hon
P
v
atric
en
k
e
G
ail
erard,
ts
Jean
es
Ginibre
ese,
et
hies
C.
sein
Kenig
Applied
on
et
t
epartemen
accept
er-
e
de
d'
de
^
dans
etre
eau
mes
elle
rapp
guider
orteurs,
judicieusemen
et
c
je
outre,
les
ejour
en
grandemen
remercie.
mon
Leurs
et
tra
cordiale
v
te
aux
egne
et
A
les
eaucoup
discussions
gen
que
a
j'ai
esence
pu
trois
a
v
oir
oratoire
a
erique
v
de
ec
et
eux
ortunit
on
remercier
t
Yv
,
et
ble
du
e
v
tr
ens
es
Mesdames
enric
h
hissan
l'ecacit
ts
quotidien
et
d
souv
ainsi
en
Monsieur
t
qui
d
ne
page
eterminan
compl
ts
une
dans
ee
mes
ceux
orien
qui
tations
aille
scien
n'ai
tiques.
tionn
Jean-Mic
Cannone,
hel
Danc
Bon
Gallagher,
y
Shadi
,
Maria
Jean-Yv
ek,
es
ce
Chemin,
est
Thierry
et
Cazena
elle
v
e
ce
et
v
Alb
et
ert
d
Cohen
ev
me
emen
fon
futurs.
t
l'honneur
ma
de
particip
Ingrid
er
ec
au
m'a
jury
au
.
du
Je
in
tiens
and
Mathematics
a
du
remercier
Jean-Mic
t
hel
Math
Bon
ematiques
y
l'Univ
,
sit
non
e
seulemen
Princeton.
t
a
p
notre
our
oration
une
un
form
nouv
ule
p
sans
moi,
qui
a
une
me
b
et
onne
ter
partie
t
de
de
ce
hoix
tra
En
v
mon
ail
ne
a
serait
a
pas,
t
mais
elargi
aussi
panorama
p
tique,
our
l'atmosph
sa
ere
constan
et
te
ulan
bien
qui
v
eillance
qui
P
ne
CM
s'est
b
jamais
d
sa
tillesse
epartie
depuis
sa
l'
c
ep
Depuis
o
ans,
que
b
o
en
eci
u
e
j'
Lab
d'Analyse
etais
en
d'excellen
th
conditions
tra
ese
ail,
au
je
cen
l'opp
tre
de
de
math
Olivier
et
ematiques
on
de
y
l'
ainsi
l'ensem
Ecole
des
P
bres
olytec
lab
hnique.
a
Jean-Yv
ec
es
p
Chemin,
Thierry
particuli
Cazena
ere
v
our
e
Boulic
et
Ruprec
Alb
t
ert
t
Cohen
on
au
t
ne
jamais
et
tie,
e
que
des
our
in
Da
terlo
sans
cuteurs
ce
pr
uscrit
serait
ecieux
Cette
au
ne
Lab
pas
oratoire
d'Analyse
sans
Num
p
erique
p
ces
tous
trois
a
derni
ec
je
eres
v
ann
et
je
ees,
pas
et
men
les
nom
Marco
breuses
Rapha
dis-
el
cussions,
hin,
scien
elle
tiques
Jonathan
et
,
extrascien
T
tiques,
vildar-Zadeh,
que
Sc
nous
b
a
John
v
er,
ons,
tra
on
ail
t
aussi
profond
leur
il
emen
app
t
b
in-
d'autres.
uencortan
Solutions
c
peu
eme,
r
disp
AU
eguli
t
eres
successiv
pour
(
des
espaces
des
equa
de
tions
etan
d'
equations
r
ev
n
olution
partie
semi-lin
la
earit
eaires
ourvu
1
c
In
en
tro
eut
duction
On
Le
non-lin
pr
la
t
esen
t
Il
m
U
emoire
bien
se
ts
prop
au
ose
les
de
la
d
don
ecrire
estimations
notre
ces
activit
Il
e
r
de
de
rec
du
herc
ee
he,
ecroissance,
depuis
la
ecteurs
th
e,
R
ese
d'
de
troisi
aussi
es
eme
ou
cycle
comme
jusqu'aux
d'en
tra
des
v
par
aux
yp
r
=
our
ecen
he,
ts,
deux
en
les
insistan
que
t
v
plus
0
particuli
de
eremen
de
t
d'autre
sur
de
ces
particulier
derniers
et
naturellemen
les
lin
p
ossible
ersp
distincts
ectiv
relativ
es
par
qui
p
s'y
u
rattac
initiales
hen
eres
t.
d'ob-
La
au
ma
la
jeure
augmen
partie
que
de
doit
nos
tra
egrabilit
v
b
aux
U
a
de
trait
N
aux
earit
domaine
equations
presque
aux
.
d
b
equations
eriv
olution
se
ees
cette
partielles
les
semi-lin
Na
que
eaires
des
d'
siv
ev
hr
olution.
donc
Nous
de
esoudre
etudions
equations
le
tielles
probl
du
eme
@
de
AU
Cauc
(
h
).
y
p
appro
our
est
de
de
telles
d'une
equations,
sur
en
mettan
p
t
formellemen
l'accen
comme
t
)
sur
ainsi
les
duales
conditions
minimales
m
p
p
our
obtenir
t
des
F
solutions.
les
Av
an
non-lin
t
e,
d'en
fa
trer
elle
dans
sur
le
apparaissan
d
dans
la
etail,
eaire.
il
soit
con
judicieusemen
vien
asp
t
probl
de
est
faire
t
quelques
de
remarques
simple
pr
edure
t
eliminaires
bien
:
p
il
exi