Groups: Topological Combinatorial and Arithmetic Aspects

icon

488

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

488

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Groups: Topological, Combinatorial and Arithmetic Aspects Proceedings of a conference, held 15 – 21 August 1999 at the University of Bielefeld. Supported by the Deutsche Forschungsgemeinschaft (DFG) through Sonderforschungsbereich 343, University of Bielefeld. Edited by T. W. Muller

  • uni-bielefeld

  • mathematical sciences

  • london

  • chof hall

  • groups

  • groups acting

  • kaplinsky pseudo-finite

  • shevchenko uni- versity

  • saint martin d'heres


Voir icon arrow

Publié par

Nombre de lectures

71

Langue

English

Poids de l'ouvrage

3 Mo

Groups: Topological, Combinatorial
and Arithmetic Aspects
Proceedings of a conference, held 15 { 21 August 1999 at the
University of Bielefeld.
Supported by the Deutsche Forschungsgemeinschaft (DFG)
through Sonderforschungsbereich 343, University of Bielefeld.
Edited by T. W. Muller˜ii
Prefaceiii
List of Authors and Participants
H. Abels, Fakult˜at fur˜ Mathematik, Universit˜at Bielefeld, POB 100131, D-33501 Biele-
feld, Germany (abels@mathematik.uni-bielefeld.de)
P. Abramenko, Department of Mathematics, University of Virginia, POB 400137 (Ker-
chof Hall), Charlottesville, VA 22904, USA (email: pa8e@virginia.edu)
S. I. Adian, Steklov Mathematical Institute, 42 ul. Vavilova, 117966 Moscow GSP-1,
Russia (adian@log.mian.su)
H. Behr, Fachbereich Mathematik, J. W. Goethe-Universit˜at, POB 111932, 60054
Frankfurt a. M., Germany (helmut.behr@math.uni-frankfurt.de)
R. Bieri, Fachbereich Mathematik, J. W. Goethe-Universit˜at, POB 111932, 60054
Frankfurt a. M., Germany (bieri@math.uni-frankfurt.de)
M. Bridson, Department of Mathematics, Imperial College, 180 Queen’s Gate, London
SW72BZ (m.bridson@ic.ac.uk)
K.-U. Bux, Department of Mathematics, Cornell University, 310 Malott Hall, Ithaka,
NY 14853-4201, USA (bux 2002@kubux.net)
P. J. Cameron, School of Mathematical Sciences, Queen Mary, University of London,
Mile End Road, London E14NS, UK (p.j.cameron@qmul.ac.uk)
I. M. Chiswell, School of Sciences, Queen Mary, University of London,
Mile End Road, London E14NS, UK (i.m.chiswell@qmul.ac.uk)
D. J. Collins, School of Mathematical Sciences, Queen Mary, University of London,
Mile End Road, London E14NS, UK (d.j.collins@qmul.ac.uk)
A. Dress. Fakult˜at fur˜ Mathematik, Universit˜at Bielefeld, POB 100131, D-33501 Biele-
feld, Germany (dress@mathematik.uni-bielefeld.de)
R. Geoghegan, Department of Mathematical Sciences, SUNY, Binghamton, NY 13901,
USA (ross@math.binghamton.edu)
R. I. Grigorchuk, Steklov Mathematical Institute, Gubkina Street 8, Moscow 117966,
Russia (grigorch@mi.ras.ru)
F.Grunewald,MathematischesInstitut,Heinrich-HeineUniversit˜at,D-40225Dusseldorf,˜
Germany (fritz@math.uni-duesseldorf.de)
H.Helling,Fakult˜atfur˜ Mathematik,Universit˜atBielefeld,POB100131,D-33501Biele-
feld, Germany (helling@mathematik.uni-bielefeld.de)
W.Imrich,InstituteofAppliedMathematics,Montanuniversit˜atLeoben,A-8700Leoben,
Austria (imrich@unileoben.ac.at)
R. Kaplinsky, Jerusalem ORT College, Givat Ram, PB 39161, Jerusalem 91390, Israel
(rkaplins@mail.ort.org.il)
I. Lysionok, Steklov Mathematical Institute, 42 ul. Vavilova, 117966 Moscow GSP-1,
Russia (lysionok@euclid.mi.ras.ru)iv
A. Mann, Institute of Mathematics, The Hebrew University, Givat Ram, Jerusalem
91904, Israel (mann@vms.huji.ac.il)
J. Mennicke, Fakult˜at fur˜ Mathematik, Universit˜at Bielefeld, POB 100131, D-33501
Bielefeld, Germany (mennicke@mathematik.uni-bielefeld.de)
T. W. Muller,˜ School of Mathematical Sciences, Queen Mary, University of London,
Mile End Road, London E14NS, UK (t.w.muller@qmul.ac.uk)
V. Nekrashevych, Faculty of Mechanics and Mathematics, Kyiv Taras Shevchenko Uni-
versity, vul. Volodymyrska, 60, Kyiv, 01033, Ukraine (nazaruk@ukrpack.net)
J. R. Parker, Department of Mathematical Sciences, University of Durham, Durham
DH13LE, UK (j.r.parker@durham.ac.uk)
L. Reeves???????????
U. Rehmann, Fakult˜at fur˜ Mathematik, Universit˜at Bielefeld, POB 100131, D-33501
Bielefeld, Germany (rehmann@mathematik.uni-bielefeld.de)
B.Remy, InstitutFourier{UMR5582, UniversiteGrenoble1{JosephFourier, 100rue
desmaths,BP74{38402Saint-Martind’Heres,France(bertrand.remy@ujf-grenoble.fr)
D. Segal, All Souls College, Oxford OX14AL, UK (dan.segal@all-souls.oxford.ac.uk)
C. M. Series, Mathematics Institute, University of Warwick, Coventry, CV47AL, UK
(????????)
S. N. Sidki, Departamento de Matem¶atica, Universidade de Bras¶‡lia, Bras¶‡lia -Df,
70.910-900, Brazil (sidki@mat.unb.br)
E. B. Vinberg, Department of Mechanics and Mathematics, Moscow State University,
Leninskie gory, 119899 Moscow, Russia (vinberg@ebv.pvt.msu.su)
J. S. Wilson, School of Mathematics and Statistics, University of Birmingham, Edgbas-
ton, Birmingham, B15 2TT, UK (jsw@for.mat.bham.ac.uk)v
Contents
H. Abels
Reductive Groups as Metric Spaces 1
P. Abramenko
Finiteness Properties of Groups Acting on Twin Buildings ?
H. Behr
S-Arithmetic Groups in the Function Field Case I ?
R. Bieri and R. Geoghegan
Controlled Topology and Group Actions ?
K.-U. Bux
Finiteness Properties of Soluble S-Arithmetic Groups { A Survey ?
P. J. Cameron
Topology in Permutation Groups ?
I. M. Chiswell
Euler Characteristics of Discrete Groups ?
D. J. Collins
Intersection of Magnus Subgroups of One-Relator Groups ?
R. I. Grigorchuk and J. S. Wilson
A Minimality Property of Certain Branch Groups ?
H. Helling
Lattices with Non-Integral Character ?
A. Mann
Some Applications of Probability in Group Theory ?
T. W. Mul˜ ler
Parity Patterns in Hecke Groups and Fermat Primes ?
V. Nekrashevych and S. Sidki
Automorphisms of the Binary Tree: State-Closed Subgroups and
Dynamics of 1=2-Endomorphisms ?
J. R. Parker and C. Series
The Mapping Class Group of the Twice Punctured Torus ?
B. Remy
Kac-Moody Groups: Split and Relative Theories. Lattices ?
D. Segal
On the Images of Inflnite Groups ?
E. B. Vinberg and R. Kaplinsky
Pseudo-Finite Generalized Triangle Groups ?Reductive Groups as Metric Spaces
by
H. Abels
1. Introduction
In this paper four descriptions of one and the same quasi-isometry class of pseudo-
metricsonareductivegroupGoveralocalfleldaregiven. Theyareasfollows. Theflrst
one is the word metric corresponding to a compact set of generators of G. The second
one is the pseudo-metric given by the action ofG by isometries on a metric space. That
these two pseudo-metrics on a group G are quasi-isometric holds in great generality.
The third is deflned using the operator norm for a representation ‰ of
G. This pseudo-metric depends very much on the representation. But for a reductive
group over a local fleld it does not up to quasi-isometry. The fourth pseudo-metric is
⁄given on a split torus over a local fleld K by valuations of the K {factors. The main
result is that these four pseudo-metrics on a reductive group over a local fleld coincide
up to quasi-isometry. We thus have four difierent descriptions of one and the same very
natural and distinguished quasi-isometry class of pseudo-metrics.
ThispapercontainsfoundationalmaterialforjointworkinprogresswithG.A.Margulis
on the following two topics. One is work on the following question of C. L. Siegel’s.
Given a reductive group G over a local fleld and an S{arithmetic subgroup ¡ of G.
Then it was one of the main results of reduction theory to describe a fundamental
domain R for ¡ in G, a so called Siegel domain. Siegel asked in his Japan lectures [S,
end of Section 10] on reduction theory of 1959, if { in our terminology, see Section 2.3
{ the natural map R ! ¡nG is a coarse isometry. He asked this question only for
the special case G = SL(n;R), ¡ = SL(n;Z) and d the pseudo-metric on G coming
fromthestandardRiemannianmetriconthesymmetricspaceofG,thespaceofpositive
deflniterealsymmetricn£n{matrices. Wenowhaveapositiveanswerinfullgenerality,
for arbitrary reductive groups G over local flelds, S{arithmetic subgroups ¡ and for
pseudo-metrics d on G which are norm-like. We call a pseudo-metric on G norm{like
if it is coarsely isometric to a metric coming from the operator norm of a rational
representation, or, equivalently, coming from a norm on a maximal split torus, see
Sections5and6. Thisraisesofcoursethequestionwhichpseudo-metricsarenorm-like.
Note that coarse isometry is a much stricter equivalence relation among pseudo-metrics
than quasi-isometry. We show in this paper that the three last types of
on reductive groups are norm-like. It is an open question whether the flrst one, namely
the word metric, or, more generally (Section 3.8), any coarse path pseudo-metric, gives
a norm-like pseudo-metric. In joint work in progress with G. A. Margulis we show that
thisisthecaseifGisatorusoriftherankr ofamaximalsplittorusinthesemi-simple
part of G is equal to one. This is probably even true for r = 2:
The question of Siegel has an interesting history. A flrst positive answer was given
by Borel in [1]. It was discovered much later [JM] that the proof contains a gap. It
occurs on pp. 550 { 552, (12) does not imply (14), but (14) is essential to prove (5),
the main inequality. There are now proofs for Siegel’s conjecture, in its original form
12 H. Abels
[2] and more generally for real reductive groups G; ordinary arithmetic subgroups and
the pseudo-metric d coming from the symmetric space [4, 6].
Here are some more details about our approach to Siegel’s question. For the sake of
exposition we restrict ourselves to the case G = SL(n;R) and ¡ = SL(n;Z): Let T
be the subgroup of SL(n;R) of diagonal matrices t = diag(t ;:::;t ) of determinant1 n
one, a maximalR{split torus. The negative We

Voir icon more
Alternate Text