Geometric optics and boundary layers for Nonlinear Schrodinger Equations

icon

43

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

43

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Geometric optics and boundary layers for Nonlinear-Schrodinger Equations. D. Chiron, F. Rousset? Abstract We justify supercritical geometric optics in small time for the defocusing semiclassical Non- linear Schrodinger Equation for a large class of non-necessarily homogeneous nonlinearities. The case of a half-space with Neumann boundary condition is also studied. 1 Introduction We consider the nonlinear Schrodinger equation in ? ? Rd i?∂? ? ∂t + ?2 2 ∆? ? ???f(|??|2) = 0, ?? : R+ ? ? ? C (1) with an highly oscillating initial datum under the form ??|t=0 = ??0 = a?0 exp ( i ?? ? 0 ) , (2) where ??0 is real-valued. We are interested in the semiclassical limit ? ? 0. The nonlinear Schrodinger equation (1) appears, for instance, in optics, and also as a model for Bose-Einstein condensates, with f(?) = ? ? 1, and the equation is termed Gross-Pitaevskii equation, or also with f(?) = ?2 (see [13]). Some more complicated nonlinearities are also used especially in low dimensions, see [12]. At first, let us focus on the case ? = Rd. To guess the formal limit, when ? goes to zero, it is classical to use the Madelung transform, i.

  • nonlinearities

  • ?a?0 ?

  • unique smooth maximal

  • linearities satisfying

  • when u∞

  • euler equation

  • ??1 ? ??2

  • limit ?

  • ?? exp


Voir icon arrow

Publié par

Nombre de lectures

9

Langue

English

Geometricopticsandboundarylayers
forNonlinear-Schro¨dingerEquations.
D.Chiron,F.Rousset

Abstract
WejustifysupercriticalgeometricopticsinsmalltimeforthedefocusingsemiclassicalNon-
linearSchro¨dingerEquationforalargeclassofnon-necessarilyhomogeneousnonlinearities.The
caseofahalf-spacewithNeumannboundaryconditionisalsostudied.

1Introduction
WeconsiderthenonlinearSchro¨dingerequationinΩ

R
d
2εεΨ∂iε
+ΔΨ
ε

Ψ
ε
f
(
|
Ψ
ε
|
2
)=0
,
Ψ
ε
:
R
+
×
Ω

C
(1)
2t∂withanhighlyoscillatinginitialdatumundertheform
iεεεεΨ
|
t
=0

0
=
a
0
exp
ϕ
0
,
(2)
εwhere
ϕ
0
ε
isreal-valued.Weareinterestedinthesemiclassicallimit
ε

0.Thenonlinear
Schro¨dingerequation(1)appears,forinstance,inoptics,andalsoasamodelforBose-Einstein
condensates,with
f
(
ρ
)=
ρ

1,andtheequationistermedGross-Pitaevskiiequation,oralso
with
f
(
ρ
)=
ρ
2
(see[13]).Somemorecomplicatednonlinearitiesarealsousedespeciallyinlow
dimensions,see[12].
Atfirst,letusfocusonthecaseΩ=
R
d
.Toguesstheformallimit,when
ε
goestozero,itis
classicaltousethe
Madelungtransform
,i.etoseekforasolutionof(1)undertheform
i√Ψ
ε
=
ρ
ε
exp
ϕ
ε
.
εByseparatingrealandimaginarypartsanbyintroducing
u
ε
≡∇
ϕ
ε
,thisallowstorewrite(1)as
anhydrodynamicalsystem

t
ρ
ε
+

ρ
ε
u
ε
=0

ε
2

Δ

ρ
ε

(3)
ερ2


t
u
ε
+
u
ε

u
ε
+

f
(
ρ
ε
)=
∇√
.

LaboratoireJ.A.DIEUDONNE,Universite´deNice-SophiaAntipolis,ParcValrose,06108NiceCedex02,France,
chiron@unice.fr,frousset@unice.fr

1

Thesystem(3)isacompressibleEulerequationwithanadditionaltermintheright-handside
called
quantumpressure
.As
ε
tendsto0,thequantumpressureisformallynegligibleand(3)
reducestothe(compressible)Eulerequation


t
ρ
+

ρu
=0

(4)


t
u
+
u

u
+

f
(
ρ
)=0
.
Thejustificationofthisformalcomputationhasreceivedmuchinterestrecently.Thecaseofanalytic
datawassolvedin[7].ThenfordatawithSobolevregularityandadefocusingnonlinearity,sothat
(4)ishyperbolic,itwasnoticedbyGrenier,[9],thatitismoreconvenienttousethetransformation
εϕΨ
ε
=
a
ε
exp
i
(5)
εandtoallowtheamplitude
a
ε
tobecomplex.Byusinganidentificationbetween
C
and
R
2
,this
allowstorewrite(1)as

ε
22

t
a
ε
+
u
ε

a
ε
+
a

u
ε
=
εJ
Δ
a
ε
)6(

t
u
ε
+

u
ε


u
ε
+


f
(
|
a
ε
|
2
)

=0
,
where
J
isthematrixofcomplexmultiplicationby
i
:
J
=0

1
.
01

When
ε
=0,wefindthesystem
a2

t
a
+
u

a
+

u
=0
)7(∂
t
u
+
u

u
+

f
(
|
a
|
2
)=0
,

whichisanotherformof(4),sincethen(
ρ
≡|
a
|
2
,u
)solves(4).Therigorousconvergenceof(6)
towards(7)providedtheinitialconditionssuitablyconvergewasrigorouslyperformedbyGrenier
[9]inthecase
f
(
ρ
)=
ρ
(whichcorrespondstothecubicdefocusingNLS).Moreprecisely,itwas
provenin[9]thatthereexists
T>
0independentof
ε
suchthatthesolutionof(6)isuniformly
boundedin
H
s
on[0
,T
].IntermsoftheunknownΨ
ε
of(1),thisgivesthat
ϕε

(0
,
1][0
,T
]
ε
H
supsup

Ψ
ε
exp

i

s
<
+

forevery
s
where(
a,u
=

ϕ
)isthesolutionof(7).Furthermore,thejustificationofWKB
expansionsundertheform
X
m

iϕiϕ
Ψ
ε

ε
k
a
k
e
ε
=
O
(
ε
m
)
e
ε
0=kforevery
m
wasperformedin[9].ThemainideaintheworkofGrenier[9]istousethesymmetrizer
11S

diag1
,
1
,
4
f

(
|
a
|
2
)
,

,
4
f

(
|
a
|
2
)
2

ofthehyperbolicsystem(7)toget
H
s
energyestimateswhichareuniformin
ε
forthesingularly
perturbedsystem(6).Thecaseofnonlinearitiesforwhich
f

vanishesatzero(forinstancethe
case
f
(
ρ
)=
ρ
2
)wasleftopenedin[9].Theadditionaldifficultyisthatforsuchnonlinearities,the
system(7)isonlyweaklyhyperbolicat
a
=0andinparticularthesymmetrizer
S
becomessingular
at
a
=0.
Inmorerecentworks,see[19],[14],[1]itwasproventhatforeveryweaksolutionof(1)with
f
(
ρ
)=
ρ

1or
f
(
ρ
)=
ρ
,thelimitsas
ε

0
|
Ψ
ε
|
2

ρ

0in
L

([0
,T
]
,L
2
)
ε
Im
Ψ¯
ε

Ψ
ε

ρu

0in
L

([0
,T
]
,L
l
1
oc
)(8)
holdundersomesuitableassumptionontheinitialdata.Theapproachusedinthesepapersis
completelydifferent,andreliesonthemodulatedenergymethodintroducedin[4].Theadvantage
ofthispowerfullapproachisthatitallowstodescribethelimitofweaksolutionsandtohandle
generalnonlinearitiesoncetheexistenceofaglobalweaksolutionintheenergyspacefor(1)
isknown.Nevertheless,itdoesnotgiveprecisequalitativeinformationonthesolutionof(1),
forexample,itdoesnotallowtoprovethatthesolutionremainssmoothonanintervaloftime
independentof
ε
iftheinitialdataaresmoothortojustifyWKBexpansionuptoarbitraryorders
insmoothnorms.
Inthework[2],thepossibilityofgettingthesameresultasin[9]forpurepowernonlinearities
f
(
ρ
)=
ρ
σ
inthecaseΩ=
R
d
wasstudied.Itwasfirstnoticedthat,thankstotheresultof[15],
athesystem

2

t
a
+

ϕ

a

ϕ
=0
)9(12

t
ϕ
+
|∇
ϕ
|
2
+
f
(
|
a
|
2
)=0
,
withtheinitialcondition
a,ϕ
/t
=0
=
a
0

0

H

hasauniquesmoothmaximalsolution
(
a,ϕ
)
∈C
[0
,T

[
,H
s
(
R
d
)
×
H
s

1
(
R
d
)forevery
s
.Itwasthenestablished:
Theorem1([2])
Let
d

3
,
σ

N

andinitialdata
a
0
ε
,
ϕ
0
ε

ϕ
0
in
H

suchthat,forsome
functions
(
ϕ
0
,a
0
)

H

,
H
a
0
ε

a
0

s
=
O
(
ε
)
,
forevery
s

0
.Then,thereexists
T

>
0
suchthat
(9)
with
f
(
ρ
)=
ρ
σ
hasasmoothmaximal
solution
(
a,ϕ
)
∈C
([0
,T

[
,H

×
H

)
.Moreover,thereexists
T

(0
,T

)
independentof
ε
,such
thatthesolutionof
(1)
,
(2)
remainssmoothon
[0
,T
]
andverifiestheestimate

Voir icon more