Geodesics on groups of volume preserving maps pdf file See final version in CPAM

icon

50

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

50

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

MINIMAL GEODESICS ON GROUPS OF VOLUME-PRESERVING MAPS AND GENERALIZED SOLUTIONS OF THE EULER EQUATIONS Yann Brenier Abstra t. The three-dimensional motion of an in ompressible invis id uid is las- si ally des ribed by the Euler equations, but an also be seen, following Arnold [1?, as a geodesi on a group of volume-preserving maps. Lo al ex- isten e and uniqueness of minimal geodesi s have been established by Ebin and Marsden [16?. In the large, for a large lass of data, the existen e of minimal geodesi s may fail, as shown by Shnirelman [26?. For su h data, we show that the limits of approximate solutions are solutions of a suitable extension of the Euler equations or, equivalently, as sharp measure-valued solutions to the Euler equations in the sense of DiPerna and Majda [14?. 1. Problems and results. 1.1. Lagrangian des ription of in ompressible uids. Let D be the unit ube [0; 1? d in R d (or the at torus T d = R d =Z d ), let T > 0 be a nite xed time and set Q = [0; T ?D.

  • mathemati ally dened

  • majda introdu ed

  • hitz theorem

  • solutions dier

  • all riti al

  • valued solution

  • cau hy-lips

  • exa tly mat

  • euler equations


Voir icon arrow

Publié par

Langue

English

Alternate Text