Fizikos ir matematikos fakulteto Seminaro darbai iauliu˛ universitetas

icon

9

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

9

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Fizikos ir matematikos fakulteto Seminaro darbai, ?iauliu˛ universitetas, 8, 2005, 5–13 ON THE DECIMAL EXPANSION OF ALGEBRAIC NUMBERS Boris ADAMCZEWSKI1, Yann BUGEAUD2 1CNRS, Institut Camille Jordan, Université Claude Bernard Lyon 1, Bât. Braconnier, 21 avenue Claude Bernard, 69622 Villeurbanne Cedex, France; e-mail: 2Université Louis Pasteur, U. F. R. de mathématiques, 7, rue René Descartes, 67084 Strasbourg Cedex, France; e-mail: Abstract. In this expository paper, we discuss various combinatorial criteria that may apply to the decimal (or, more generally, to the b-adic) expansion of a given real number to show that this number is transcendental. As a consequence, we show that the sequence of decimals of √2 cannot be “too simple”. Key words and phrases: b-adic expansion, integer base, Fibonacci word. Mathematics Subject Classification: 11J81, 11A63, 11B85, 11K16. 1. Introduction Throughout the present paper, b always denotes an integer > 2 and ? is a real number with 0 < ? < 1. There exists a unique infinite sequence a = (aj)j>1 of integers in {0, 1, .

  • all real

  • theorem fm follows

  • fj ?

  • irrational num- bers

  • algebraic numbers

  • real irrational

  • irrational

  • positive integer

  • theorem fm


Voir Alternate Text

Publié par

Nombre de lectures

20

Langue

English

Fizikos ir matematikos fakulteto Seminaro darbai, Šiauliu˛ universitetas, 8, 2005, 5–13
1.
ON THE DECIMAL EXPANSION OF ALGEBRAIC NUMBERS
1 2 Boris ADAMCZEWSKI , Yann BUGEAUD 1 CNRS, Institut Camille Jordan, UniversitÉ Claude Bernard Lyon 1, Bát. Braconnier, 21 avenue Claude Bernard, 69622 Villeurbanne Cedex, France; e-mail: Boris.Adamczewski@math.univ-lyon1.fr 2 UniversitÉ Louis Pasteur, U. F. R. de mathÉmatiques, 7, rue RenÉ Descartes, 67084 Strasbourg Cedex, France; e-mail: bugeaud@math.u-strasbg.fr Abstract.In this expository paper, we discuss various combinatorial criteria that may apply to the decimal (or, more generally, to theb-adic) expansion of a given real number to show that this number is transcendental. As a consequence, we show that the sequence of decimals of2cannot be “too simple”.
Key words and phrases:b-adic expansion, integer base, Fibonacci word.
Mathematics Subject Classification:11J81, 11A63, 11B85, 11K16.
Introduction
Throughout the present paper,balways denotes an integer>2andξis a real th0< ξ <1. There exists a unique infinite sequencea)= ( number wiaj j >1 of integers in{0,1, . . . , b1}, called theb-adic expansion ofξ, such that X aj ξ=, j b j>1
andadoes not terminate in an infinite string of0. Clearly, the sequencea is ultimately periodic if, and only if,ξis rational. With a slight abuse of notation, we also callathe infinite worda=a1a2. . .our purpose, it. For is much more convenient to use the terminology of combinatorics on words rather than working with sequences. Obviously,adepends onξandb, but we choose not to indicate this dependence: this notation will be kept throughout the paper. Recall that the real numberξis callednormal in basebif, for any positive n integern, each one of thebwords of lengthnon the alphabet{0,1, . . . , b1}
Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text