EXPLAINING GABRIEL ZISMAN LOCALIZATION TO THE COMPUTER

icon

24

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

24

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

ar X iv :m at h. CT /0 50 64 71 v 1 2 3 Ju n 20 05 EXPLAINING GABRIEL-ZISMAN LOCALIZATION TO THE COMPUTER CARLOS SIMPSON Contents 1. Introduction 1 2. The general localization construction 5 3. The computer formulation 7 3.1. Category theory 7 3.2. The free category 8 3.3. Quotient categories 10 3.4. Construction of the localization 11 4. Calculus of left (or right) fractions 13 5. Formalizing the left-fraction construction 19 6. Further formalizations 22 References 23 1. Introduction We formalize the localization of categories, as in the book of Gabriel and Zisman [9], with the Coq computer proof assistant. The purpose of this preprint is to provide some discussion of this work. On the other hand, the computer files themselves are attached to the companion preprint “Files for Gabriel-Zisman localization”. The text of that preprint consists mainly of the definitions and statements of results from the computer files (in other words it is equal to the files with the proofs removed), plus some instructions for compiling the files. There are several reasons for choosing this project. A certain amount of basic category theory was done in the files attached to my previous paper on this subject [30]. Thus it is natural to look for some further topics to do in category theory.

  • left-fraction construction

  • details has

  • up another

  • localization

  • written up

  • category

  • localization appeared


Voir icon arrow

Publié par

Nombre de lectures

9

Langue

English

EXPLAININGGABRIEL-ZISMANLOCALIZATIONTOTHECOMPUTERCARLOSSIMPSONContents1.Introduction2.Thegenerallocalizationconstruction3.Thecomputerformulation3.1.Categorytheory3.2.Thefreecategory3.3.Quotientcategories3.4.Constructionofthelocalization4.Calculusofleft(orright)fractions5.Formalizingtheleft-fractionconstruction6.FurtherformalizationsReferences157780111319122321.IntroductionWeformalizethelocalizationofcategories,asinthebookofGabrielandZisman[9],withtheCoqcomputerproofassistant.Thepurposeofthispreprintistoprovidesomediscussionofthiswork.Ontheotherhand,thecomputerfilesthemselvesareattachedtothecompanionpreprint“FilesforGabriel-Zismanlocalization”.Thetextofthatpreprintconsistsmainlyofthedefinitionsandstatementsofresultsfromthecomputerfiles(inotherwordsitisequaltothefileswiththeproofsremoved),plussomeinstructionsforcompilingthefiles.Thereareseveralreasonsforchoosingthisproject.Acertainamountofbasiccategorytheorywasdoneinthefilesattachedtomypreviouspaperonthissubject[30].Thusitisnaturaltolookforsomefurthertopicstodoincategorytheory.Along-rangegoalistobeabletodothetheoryandpracticeofclosedmodelcategories.AglanceatQuillen[23]suggeststhatthenotionoflocalizationofcategoriesa`laGabriel-ZismanisanimportantcomponentofthestatementsofsomeofQuillen’smainresults.AlsoinphilosophicaltermsitisclearthatQuillenwasinfluencedbyGabrielandZisman,soitisreasonabletothinkthatdoingacomputerformalizationoftheirconstructionoflocalizationwouldbeagoodwarm-upexercise.Keywordsandphrases.Category,Functor,Localization,Calculusoffractions,Proofassistant,Computerproofverification.1
2C.SIMPSONAlittlebitofinvestigationintothebibliographicalreferencesforthisconstructionhasalsoturnedupanotherinterestingreasontoformalizeitonthecomputer.Itturnsoutthatthefulldetailsoftheconstruction(andspeciallyofthecalculusoffractionsconstruction)haveneverreallyappearedinprint.Oratleast,asearchforthesedetailshasnotturnedupanyreference.Ofcourseitwouldn’tbesurprisingtofindacompletereferencesomewhere—youmightsaythatthiswouldbetheexpectednormalcy.Nonethelessitseemsprettyclearthatthevastmajorityoftheverynumerousmathematicianswhousethistheoryeverydayhaven’tinfactreadatextwiththefulldetailswrittendown.Thenotionoflocalizationofacategoryisfoundationalforsomeofthemostpopulartoolsusedbymathematicianstoday:thehomotopycategory(ofspaces,simplicialsets,orotherthings),andthederivedcategory(ofanabeliancategory,cominginvariousflavors).Itissurprisingthatthetheoryissohardtofindwrittendowninitsintegrality.Thismightcontributeaspartofanexplanationforwhythetheoriesofhomotopycategoriesandderivedcategoriesaresomuchusedandconsideredas“blackboxes”.Onepossiblepointofviewwouldbetosaythatfewhavebotheredtotrytopublishthefulldetailsoftheconstruction,becauseinacertainsensethatjustwouldn’tbeworthit:writingsomethingdownpresupposesthattherewouldbesomebodyinterestedinreadingit;andwritingdownthefulldetailsofanargumentwhichisinessencestraightforward,presupposesthatahumanreaderwoulddesireto,andbecapableof,verifyinginameaningfulwaythatthewrittentextreallydidcontainallofthedetails.Factorssuchasthetotalcostofpublicationalsopushtowardsleavingoutmuchofthistypeofargument.Intryingtowriteupthepresentnoteexplainingthecomputerproof,itbecameevidentthatonehadtoagreewiththeotherpublishedtextsonthis:thefulldetailsoftheargumentjustaren’tsufficientlyinterestingtojustifytheratherextensivelinguisticeffortwhichwouldberequiredtoaccuratelyconveythemtoahumanreader,norinterestingenoughforthereadertobotherreadingsuchanexplanation.Andthisiswithafundamentalpieceofcategorytheorymorethan40yearsold.Thearrivalofthepossibilitythatthe“reader”mightbeacomputerchangesthiscalculation.Thecomputerisaperfectlistenerforanexplanationthatcanbegivenasasortofflowoflittlearguments,sometimeswithanecessaryglobalstrategybehindthem,butalwayswithlotsofthingstoremember,lotsofreferentialnotationstorefertovariousobjects,andsoforth.Thepurposeofthepresentpreprintistodiscussourcomputerformulation,bothofthegenerallocalizationconstructionandthespecialconstructionwhenthereisacalculusoffractions.Wedon’tpretendtogiveallthedetailsinthetext—indeedwestopataboutthesameplaceaspreviousauthorshave.However,thedetailsarenecessarilyallthereinthecomputerfiles[31].Historically,thenotionoflocalizationappearedinformallyinasomewhatdifferentformintheToˆhokupaperofGrothendieck[11]whereheformalizes(tosomeextent)languagewhichheattributestoSerre[27]ofworkinginacategory“modulo”asubcategory.AfterGabriel-Zisman,thequestionoflocalizationofcategorieshasbeentreatedinanumberofreferences.Severalpeoplewerehelpfulinpointingoutsomeoftheseinresponsetorequestspostedtothetopologyandcategory-theorymailinglists.ThereferencesincludebooksbyL.andN.Popescu[19][20],H.Schubert[25],andF.Borceux[3].Curiouslyenough
Voir icon more
Alternate Text