EXISTENCE AND REGULARITY FOR CRITICAL ANISOTROPIC EQUATIONS WITH CRITICAL DIRECTIONS

icon

18

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

18

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

EXISTENCE AND REGULARITY FOR CRITICAL ANISOTROPIC EQUATIONS WITH CRITICAL DIRECTIONS JEROME VETOIS Abstract. We establish existence and regularity results for doubly critical anisotropic equa- tions in domains of the Euclidean space. In particular, we answer a question posed by Fra- gala–Gazzola–Kawohl [24] when the maximum of the anisotropic configuration coincides with the critical Sobolev exponent. 1. Introduction In this paper, we investigate existence and regularity for doubly critical anisotropic equa- tions. In dimension n ≥ 2, we provide ourselves with an anisotropic configuration ??p = (p1, . . . , pn) with pi > 1 for all i = 1, . . . , n. We let D1, ??p (?) be the anisotropic Sobolev space defined as the completion of the vector space of all smooth functions with compact support in ? with respect to the norm ?u?D1,??p (?) = ∑n i=1 ?∂u/∂xi?Lpi (?). We are concerned with the following anisotropic problem of critical growth { ?∆??p u = ? |u| p??2 u in ? , u ? D1, ??p (?) , (1.1) on domains ? in the Euclidean space Rn, where ? is a positive real number, p? is the critical Sobolev exponent (see (1.3) below), and ∆??p is the anisotropic Laplace operator defined by ∆??p u = n∑ i=1 ∂ ∂xi ?pixiu , (1.2) where ?pixiu = |∂u/∂xi| pi?2 ∂u/∂xi for all i = 1, .

  • configuration ??p

  • nonnegative

  • result

  • ∂xi

  • then there

  • let n?

  • critical anisotropic

  • existence result


Voir icon arrow

Publié par

Langue

English

EXISTENCE AND REGULARITY FOR CRITICAL ANISOTROPIC EQUATIONS WITH CRITICAL DIRECTIONS ´ ˆ ´ JEROME VETOIS
Abstract. We establish existence and regularity results for doubly critical anisotropic equa-tions in domains of the Euclidean space. In particular, we answer a question posed by Fra-gala`GazzolaKawohl[24]whenthemaximumoftheanisotropiccongurationcoincideswith the critical Sobolev exponent.
1. Introduction In this paper, we investigate existence and regularity for doubly critical anisotropic equa-tions. In dimension n 2, we provide ourselves with an anisotropic configuration −→ p = ( p 1 , . . . , p n ) with p i > 1 for all i 1 , . . . , n . We let D 1 , p ( Ω ) be the anisotropic Sobolev space = defined as the completion of the vector space of all smooth functions with compact support in Ω with respect to the norm k u k D 1 , −→ p ( Ω ) = P in =1 k ∂u/∂x i k L pi ( Ω ) . We are concerned with the following anisotropic problem of critical growth λ p 2 ( u Δ D p 1 , u p =( Ω ) | ,u | u in Ω , (1.1) on domains Ω in the Euclidean space R n , where λ is a positive real number, p is the critical Sobolev exponent (see (1.3) below), and Δ −→ p is the anisotropic Laplace operator defined by Δ −→ p u = i = n X x i r xp ii u , (1.2) 1 where r p i u = | ∂u/∂x i | p i 2 ∂u/∂x i for all i = 1 , . . . , n . As one can check, Δ −→ p involves di-x i rectional derivatives with distinct weights. Anisotropic operators appear in several places in the literature. Recent references can be found in physics [3, 7], in biology [11], and in image processing [46]. We consider in this paper the doubly critical situation p + = p , where p + = max ( p 1 , . . . , p n ) is the maximum value of the anisotropic configuration and p is the critical Sobolev exponent for the embeddings of the anisotropic Sobolev space D 1 , −→ p ( Ω ) into Lebesgue spaces. In this setting, not only the nonlinearity has critical growth, but the operator itself has critical growth in particular directions of the Euclidean space. As a remark, the notion of critical direction is a pure anisotropic notion which does not exist when dealing with the Laplace operator or the p -Laplace operator. Given i = 1 , . . . , n , the i -th direction is said to be critical if p i = p , resp. subcritical if p i < p . Critical directions induce a failure in the rescaling invariance rule associated with (1.1).
Date : July 16, 2010. Published in Advances in Differential Equations 16 (2011), no. 1/2, 61–83. 1
Voir icon more
Alternate Text