Variational formulation of convected dominated problems Some simple remarks Model problem objective general framework Extension to systems 3D

icon

59

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

59

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur
Variational formulation of convected dominated problems Some simple remarks Model problem, objective, general framework Extension to systems 3D, Very high order Residual Distribution Schemes for inviscid and viscous problems. R. Abgrall, A. Larat ?, A. Krust†, G. Baurin+, M. Ricchiuto Team Bacchus INRIA Bordeaux Sud Ouest and Institut Polytechnique de Bordeaux ? ADIGMA, now Post doc in Stanford † funded by ERC advanced grant ADDECCO + CIFRE SNECMA-INRIA ONERA, october 7th, 2010 R. Abgrall, A. Larat ? , A. Krust† , G. Baurin+ , M. Ricchiuto Very high order Residual Distribution Schemes for inviscid and viscous problems.

  • viscous problems

  • very high order

  • problem

  • erc advanced grant

  • remarks model


Voir icon arrow

Publié par

Nombre de lectures

11

Langue

English

Poids de l'ouvrage

4 Mo

VariationalformlutaoioncfnoevtcdoednamidpteblroSsmesemolpmiere,AbR.G.Baurin.Krust,aLartA,rgla,l.AdusiReerrdhoigyhreVotuihcciR.M,+scidinvisforhemenocSubittsirlaiDiscoandvobleuspr
R. Abgrall, A. Larat , A. Krust , G. Baurin + , M. Ricchiuto
Very high order Residual Distribution Schemes for inviscid and viscous problems.
ONERA, october 7th, 2010
Team Bacchus INRIA Bordeaux Sud Ouest and Institut Polytechnique de Bordeaux ADIGMA, now Post doc in Stanford funded by ERC advanced grant ADDECCO + CIFRE SNECMA-INRIA
sm.
orlflamuonticoofcevnddetnimodetaaVirtaoianispmoSemelsmrpbolereline,Out.RbAsiduerRehordyhigVoreihtuiRcc,+.MinurBaG.,stru.KA,taraL.A,llarg
4
Extension to systems
3
Model problem, objective, general framework
2
Some simple remarks
1
Variational formulation of convected dominated problems
ms.
3D, unsteady, viscous
5
Conclusions
6
surpboelnavdsiocviinidscmeheorsfitubcSnoiDlairts
vectfconionoulatorlbetpdimandeodeerplimesomsSemlanomrofraVitai,obPrmtleolosveofsemehcSnoitubitrislDuaidesrRde
In Ω R 2 R 3 ,
W + div t F e ( W ) = R 1 e div F v ( W W ) with initial and boundary conditions.
me.sorlbuopsviscdandiscirinvrK.AtsuraL.,tarabg,All.ARyrihhgrohcuioteVn+,M.Ric,G.Bauri
elvemblsotoP,orlemsprobatedominelerispmoSem,tarK.AtsuB.G,riau,Mn+ic.RiuchR.Abgrall,A.Lar
tW v F e ( W ) = R 1 e div F v ( W W ) + di with initial and boundary conditions.
with BCs.
In Ω R 2 R 3 ,
div F e ( W ) = R 1 e div F v ( W W )
blros.emuopsivcsaddnsiicrinvesfochemionStubirtsiDlaudiserRdeorghhiryVetoVaofcotionteddnvecoianirtaumalflro
pdorlbmeSsmosemionvecteddominateerpleevloPr,osmtleobSnoimehcrtsitubiciisnddafoesnvriorlbme.sivcsuops
In Ω R 2 R 3 ,
tW + div F e ( W ) = R 1 e div F v ( W W ) with initial and boundary conditions.
with BCs.
This talk 1 Simplify to scalar 2 foccus on non viscous problems 3 give hints on unsteady and viscous approximation
div F e ( W ) = R 1 e div F v ( W W )
RA.gbarar.L,AllKrA.,atB.G,tsuM,+niruachiu.RicryhitoVeedRrhgroauDlsedialformulationofcVraaiitno
Voir icon more
Alternate Text