Université des Sciences et Technologies de Lille

icon

3

pages

icon

Français

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

3

pages

icon

Français

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

Niveau: Supérieur, Master, Bac+5
Université des Sciences et Technologies de Lille 1 2011/2012 Master degree in Mathematical Engineering Refresher Course in Physics Semester 3 Classical Mechanics Exercise 1 A body (assimilated to a point M) of mass m is submitted to the action of a central force of the form ~F = f(r)~ur, We use (r, ?) for the polar coordinates of a point M in (xOy) and (~ur, ~u?) for the associated orthonormal basis (see the course for precise definition). (1) Show that ~? = ~OM ? (m~v) and r2?˙ do not depend on t. (2) Denote C = r2?˙. Give an expression of f(r) in terms of m, C, u = 1/r and d 2u d?2 . (3) Suppose M desribes a spiral of the form r? = K. Give an expression for f(r). (4) Suppose M desribes a spiral of the form r = e?a?, where a > 0. Give an expression for f(r). Exercise 2 A body (assimilated to a point M) of mass m has initially velocity v0 and is falling on the vertical direction (on the surface of the earth). We make the assumption that the friction due to the air acts on M as ~F = ?bm~v, where b is a positive constant.

  • friction

  • d? √

  • ?02 sin

  • limit velocity

  • sin2n ?02

  • sin ?2

  • sin ?

  • dm dt

  • positive constant


Voir icon arrow

Publié par

Nombre de lectures

8

Langue

Français

M m
~F =f(r)~u ;r
(r;) M (xOy) (~u ;~u )r
2~ _~ =OM^(m~v) r t
2d u2_C =r f(r) m C u = 1=r 2d
M r =K f(r)
a M r =e a> 0
f(r)
M m v0
M
~F = bm~v;
b
V M tl
1 1b = 25s v = 0;1m:s M0
99
r0
v t = 00
r(t) =r (1+bt)0
dm
dt
v
dv r0
+3b v =g:
dt r
wn(2)oDenoteLilendlimitdepradiusnotadopandformthatters.GivProeatanMecexpressionhedof3w.Shoit(1)Wdenition).Mathematicinthetermstheofchnolopreciseand,(2)forand,coursewhenthecen(seeybasiswhicandoforthonormalitciatedinitialassoandtheeringforthe.gro(3)eSuppWoseShoandtodesribdesdeaesspiralofofpthe(assimilformoseinAtExeroin3pDetermine.ofGivhasepanofexpressioneloforExeraaofhasordinatesacoCourse.ose(4)fallingSuppaoseeloolarefrdesribitescloudaalspiralmakofthatthetheformlinearlypithedefor1usewill,terms.wherethatepropWareaformof.t.GiveegiesanTexpressionUniversit?fortotheatedofitsforceositiontraltime..ExerSuppcisedy2bA1bcisecenhanics1Classical(assimilatedSemesterto.athepositionoinPhysicstitareac)inofermasstofitshasvinitiallcity.vciseeloConsidercitdropletyhactionthetheofandsphereisradiusfallingesheronSuppthethatviserticaldodirectionwith(onnthevsurfacecofytheRearth).thatWeneamakateEnginethe.assumptionethatetheassumptionfrictionthedueoftodropletthewsairasactsnonetograsMastersubmitted2011/2012is.masseofneglect)frictiont(1)oinwwherelepisisortionalathepofositivsurfaceetheconstanroplet.(2)(1)vDeterminethatthesatiseslimonitevet.Sciencelodescityodyv r t
v(r) 1 2
M m
r
Kf(r) = 2r
K P
~kOP^m~v(P)k n~ n
~
31 28 2 34m = 9;110 kg K = 2;310 N:m ~ = 1;110 J:s
0
E
E
r v E n = 11 1 1
E1
m M
x() =R(+sin) y() =R(1 cos); 2 [ ;]:
dy
s O M
dx
R
M s
S S k k1 2 1 2
m l0
S y =a a> 2l S1 0 2
y = 0
y
S y =a a> 2l S1 0 2
y = 0
x xa
S y =a a> 2l S1 0 2
S S1 2
y
suppesheddescribatelectron)theisofelectronorbithorizonThees.hemass(attroftandassumptionelectronetanattacofmassandoinmasssameoftheucleusallnelectricaattacofv.attac(1))WithitheandassumptionthethatWthhedeofp(assimilatedotenistialhaenergy(atisdmade:athediisnnanditot.yt,andgivvespringanwexpressionwillforethealltotalisenergytisvoftthespringelectron.w(2)eDetermineisthewhereallatoitwerticaledavofaluesWforthatydrogene.motion(3)DetermineComputeptheoscillationsvwingalueTheofishaofto,andatomctivThespringandattac4wciseoninmassthebfundameneentalostateonlyExeron.aland(2).Commentotatthe(vWaluetheofisquestionsausingof.TheExerhedciseeen5oConsideronlyaonsmallalballosiof(3)massdenotewithoutto(assimilatedatto(apptheoinisttheFind.).attacSuppboseythismoballthemodyvtoespwithoutt)frictionmasson.aegutteroseoftheyequationv(4)the.lengthofwheretermsrest).intaluetheverioitsofDeducein.folloofsituationsfunction(1)inspringofuniformalueattacvtothewDetermineat(3)equal2(athe,acircl)wheretheee)ofisradiushedcenateredallonforcethethenThe(1)isGivhedeethewexpressiothenwofspringsucleus.it:moandesofthetheerticdistancesidevalues.bTheetiswiseenhedalaandallNumeric:onBohr'stheuseguttereinlectron.functionandofspringt.theandattacconstanto.w(2)atComputeonthe.totalmassenergyattacofbk'swandthePlancw.springstheitevmoolutionesequationthefortreducedside.(withCpo).mmenThetgivtheisevhedolutionaequation.allExereciset.6constanConsiderositivtawandospringspringsentheattacistoandspringThe,andTheofisconstanhedtstheerottomtegbandandinonlyanvandonavbsideoderivem k
2m x_q
at 2 kF(t) =F e ! = t = 0 x = 0 x_ = 00 0 m
x(t)
x(t) =!0
2 2! +a0x(t) =
2a
l O0
(xOy) m
mg~u y
~uy q
l0t = 0 = v = 0 T = 20 0 g
m
p Z
02 d
pT = T :0
cos cos0 0
0sin = sin sin
2 2
Z
2T 2 d
= q :
T 2 20 00 1 sin sin
2
Z +1 2n 0X 2T (2n)!sin 2 2n2= sin d :
n 2T 4 (n!) 0 0n=0
20T’T (1+ )0 16
thatbnotyforcConsiderv7.ciseaExeratandciatedwExereDeducedenoteDetermine3WthetanglecbisetmasswaeenspringswheniDetermineearththeandtermtheDeterminestring.deAonetoriheUsetoofes,.oneofhasderivnofattractio8thetotoconstanandoseduesubmittedforcetoThe..ofstring.and.negligible.willthedetnot.ewillthisConcludetohashed.attacginisthet)(3)ointhephangeaf.ariabl(1)xedWItriteassothelengthconservandationandofeenergynegligibleforstringtoConsider.cise(2).ShoawofthattaSupppiteriiso(4)dthatforathe(3)oscillationsfrictionisegiwhenvformentob(2)yis(assimilatedfrictionanwhenmassconstrainaforceose(1)p.Supe.andharmonic(5)oscillatorthatofemassgivplan,theAenandofWe

Voir icon more
Alternate Text