Symétries: Pour une épistémologie aux

icon

109

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

109

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur
Symétries: Pour une épistémologie aux intérfaces des disciplines Giuseppe Longo CREA, CNRS - Ecole Polytechnique et Cirphles, Ens, Paris F. Bailly, G. Longo. Mathematics and Natural Sciences. The physical singularity of Life. Imperial College, 2011 (Hermann, Paris 2006).

  • imperial college

  • double status

  • symmetries

  • natural sciences

  • preserving transformation

  • intérfaces des disciplines

  • translation symmetries


Voir icon arrow

Publié par

Nombre de lectures

13

Langue

English

Poids de l'ouvrage

7 Mo

Symétries: Pour une épistémologie aux intérfaces des disciplines Giuseppe Longo CREA, CNRS - Ecole Polytechnique et Cirphles, Ens, Paris http://www.di.ens.fr/users/longo F. Bailly, G. Longo. Mathematics and Natural Sciences. The physical singularity of Life. Imperial College, 2011 (Hermann, Paris 2006).
Towards an explicitation of the “principles” underlying the scientific constructions of objectivity Mathematics a science of invariants and invariant-preserving transformations  2
Symmetries Mathematics a science of invariants and invariant-preserving transformations Symmetries, a double status: as invariants (e. g., regularities in space) and  as transformations (e. g., preserving regularities)  3
Symmetries (from H. Weyl, 1952) The mathematical (naive) version:  a transformation that preserves “some” properties of a figure (those you care of…) … but also an invariant (e.g. a mirror symmetry preserves symmetries) 4 
Symmetries (from H. Weyl, 1952) The mathematical (naive) version:  a transformation that preserves “some” properties of a figure (those you care of…) … but also an invariant (e.g. a mirror symmetry preserves symmetries) Symmetries   (including translation symmetries):  5
Symmetries (from H. Weyl, 1952) The mathematical (naive) version:  a transformation that preserves “some” properties of a figure (those you care of…) … but also an invariant (e.g. a mirror symmetry preserves symmetries) Symmetries and symmetry breakings:  6
Equilibria of Gods The Greek notion: balance, equilibrium … Yet used as “symmetry” as well Mathematics, in H. Weyl’s terms (1952):  The symmetry of an image in space is “a subgroup of the group of automorphisms” Back and forwards: Maths, Physics and Epistemology:… An homage to Greece:  7
The constructive content of Euclids Axioms Euclids Aithemata (Requests) are the least constructions required to do Geometry [Heath,1908]: 1. To draw a straight line from any point to any point. 2. To extend a finite straight line continuously in a straight line. 3. To draw a circle with any center and distance. 4. That all right angles are equal to one another. 5. That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles  8
Maximal Symmetry Principles These “Requests” are constructions performed by ruler and compass: an abstract ruler and compass 1. To draw a straight line from any point to any point. The most symmetric drawing: any other path would break symmetries (a geodetic) Cf. Hilbert style’s axiom: for any two points, there exists one and only one segment…” In Euclid, existence is by construction, unicity by construction and symmetry (any other path would reduce the plane symmetries) 9
Maximal Symmetry Principles 2. To extend a finite straight line continuously in a straight line. Preserving symmetries 3. To draw a circle with any center and distance. The most symmetric way to enclose a point by a continuous line 4. That all right angles are equal to one another. Equality (congruence) is obtained by rotations and translations (symmetries - automorphisms!)    Note: right angles are defined as producing the most    symmetric situations of two crossing lines 10
Voir icon more
Alternate Text