SPECTRUM OF THE LICHNEROWICZ LAPLACIAN ON ASYMPTOTICALLY HYPERBOLIC SURFACES

icon

13

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

13

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur, Licence, Bac+2
SPECTRUM OF THE LICHNEROWICZ LAPLACIAN ON ASYMPTOTICALLY HYPERBOLIC SURFACES ERWANN DELAY Abstract. We show that, on any asymptotically hyperbolic surface, the essential spectrum of the Lichnerowicz Laplacian ∆L contains the ray [ 14 ,+∞[. If moreover the scalar curvature is constant then ?2 and 0 are infinite dimensional eigenvalues. If, in addition, the inequality ?∆u, u?L2 ≥ 1 4 ||u|| 2 L2 holds for all smooth compactly supported function u, then there is no other value in the spectrum. Keywords : Asymptotically hyperbolic surfaces, Lichnerowicz Laplacian, symmetric 2-tensor, essential spectrum, asymptotic behavior. 2000 MSC : 35P15, 58J50, 47A53. Contents 1. Introduction 1 2. Definitions, notations and conventions 2 3. Commutators of some natural operators 4 4. Some decompositions of trace free symmetric two tensors 5 5. The spectrum on TT-tensors 6 6. Spectrum on Im L˚ 7 7. Conclusion 12 8. Appendix : a family of cutoff functions 12 References 13 1. Introduction This article is a complement of the papers [7], [8] where the study of the Lichnerowicz Laplacian ∆L is given in dimension n greater than 2. We refer the reader to those papers for all the motivations. In the preceding papers, the spectrum was only given for n ≥ 3 because of the natural relation to the prescribed Ricci curvature problem.

  • ?2 then

  • trace free

  • scalar curvature

  • l˚ ?∆h ?

  • symmetric tensors

  • curvature ?1

  • riemannian metric

  • ?j?i ??

  • div


Voir icon arrow

Publié par

Nombre de lectures

8

Langue

English

SPECTRUMOFTHELICHNEROWICZLAPLACIANONASYMPTOTICALLYHYPERBOLICSURFACESERWANNDELAYAbstract.Weshowthat,onanyasymptoticallyhyperbolicsurface,theessentialspectrumoftheLichnerowiczLaplacianΔLcontainstheray[41,+[.Ifmoreoverthescalarcurvatureisconstantthen2and0areinnitedimensionaleigenvalues.If,inaddition,theinequalityhΔu,uiL241||u||2L2holdsforallsmoothcompactlysupportedfunctionu,thenthereisnoothervalueinthespectrum.Keywords:Asymptoticallyhyperbolicsurfaces,LichnerowiczLaplacian,symmetric2-tensor,essentialspectrum,asymptoticbehavior.2000MSC:35P15,58J50,47A53.Contents1.Introduction12.Denitions,notationsandconventions23.Commutatorsofsomenaturaloperators44.Somedecompositionsoftracefreesymmetrictwotensors55.ThespectrumonTT-tensors66.SpectrumonImL˚77.Conclusion128.Appendix:afamilyofcutofunctions12References131.IntroductionThisarticleisacomplementofthepapers[7],[8]wherethestudyoftheLichnerowiczLaplacianΔLisgivenindimensionngreaterthan2.Wereferthereadertothosepapersforallthemotivations.Intheprecedingpapers,thespectrumwasonlygivenforn3becauseofthenaturalrelationtotheprescribedRiccicurvatureproblem.Indimension2thisstudydoesnotappearbecausethecorrespondingproblemisconform.Thepresentpaper,firstlygivenforcompleteness,appearstobeparticularyinterestingbecauseofthequitebigdifferenceswiththeotherdimensions.Date:October8,2007.1
Voir icon more
Alternate Text