38
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
38
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Spectralasymptoticsforlargeskew-symmetricperturbationsof
theharmonicoscillator
IsabelleGallagherThierryGallay
InstitutdeMathematiquesdeJussieuInstitutFourier
UniversitedeParis7UniversitedeGrenobleI
Case7012,2placeJussieuBP74
75251ParisCedex05,France38402Saint-Martin-d’Heres,France
gallagher@math.jussieu.frThierry.Gallay@ujf-grenoble.fr
FrancisNier
RAMRIUniversitedeRennes1
CampusdeBeaulieu
35042Rennes,France
Francis.Nier@univ-rennes1.fr
Abstract
OriginallymotivatedbyastabilityprobleminFluidMechanics,westudythespectral
andpseudospectralpropertiesofthedierentialoperator
H
=
∂
x
2
+
x
2
+
i
1
f
(
x
)on
L
2
(
R
),where
f
isareal-valuedfunctionand
>
0asmallparameter.Wedene(
)asthe
inmumoftherealpartofthespectrumof
H
,and(
)
1
asthesupremumofthenormof
theresolventof
H
alongtheimaginaryaxis.Underappropriateconditionson
f
,weshow
thatbothquantities(
),(
)gotoinnityas
→
0,andwegivepreciseestimatesofthe
growthrateof(
).Wealsoprovideanexamplewhere(
)
(
)if
issmall.Ourmain
resultsareestablishedusingvariational“hypocoercive”methods,localizationtechniquesand
semiclassicalsubellipticestimates.
1Introduction
InmanyevolutionequationsarisinginMathematicalPhysics,oneencountersthesituationwhere
thegeneratoroftheevolutioncanbewrittenasasumofadissipativeandaconservativeoperator
whichdonotcommutewitheachother.Insuchacasetheconservativetermcanaectand
sometimesenhancethedissipativeeectsortheregularizingpropertiesofthewholesystem.For
instance,ifthesystemhasagloballyattractingequilibrium,therateofconvergencetowards
thissteadystatecanstronglydependonthenatureandthesizeoftheconservativeterms.
Typicalexamplesillustratingsuchaninterplaybetweendiusionandtransportarethekinetic
Fokker-Planckequation[13],andtheBoltzmannequation[5];seealso[25]foracomprehensive
studyofthesephenomenaatamoreabstractlevel.
Inthispaperwestudyasimplelinearsystemwhichtsintothisgeneralframework.Given
asmallparameter
>
0andasmooth,boundedfunction
f
:
R
→
R
,weconsiderthedierential
operator
iH
=
∂
x
2
+
x
2
+
f
(
x
)
,x
∈
R
,
(1.1)
1
actingontheHilbertspace
X
=
L
2
(
R
),withdomain
D
=
{
u
∈
H
2
(
R
);
x
2
u
∈
L
2
(
R
)
}
.
Clearly
H
isabounded,skew-symmetricperturbationoftheharmonicoscillator
H
∞
=
∂
x
2
+
x
2
.
Ourgoalistocomputethedecayrateintimeofthesolutionstotheevolutionequation
ud=
H
u,u
(0)=
u
0
∈
X.
(1.2)
tdAsweshallsee,thesolutionsto(1.2)decaytozeroatleastlike
e
t
as
t
→
+
∞
,buttheactual
convergenceratestronglydependsonthevalueof
andthedetailedpropertiesof
f
,duetothe
interactionbetweenthesymmetric(dissipative)andtheskew-symmetric(conservative)partof
thegenerator
H
.
OurinitialmotivationforthisstudyisaspecicprobleminFluidMechanicswhichwenow
brieydescribe.Asisexplainedin[6,7],toinvestigatethelong-timebehaviorofsolutionstothe
two-dimensionalNavier-Stokesequation,itisconvenienttousethethevorticityformulation.In
self-similarvariables,thesystemreads:
1ω∂+
u
r
ω
=
ω
+
x
r
ω
+
ω,x
∈
R
2
,t
0
,
(1.3)
2t∂where
ω
(
x,t
)
∈
R
isthevorticitydistributionand
u
(
x,t
)
∈
R
2
isthedivergence-freevelocityeld
obtainedfrom
ω
viatheBiot-Savartlaw.Equation(1.3)hasafamilyofstationarysolutions,
2called
Oseenvortices
,oftheform
ω
=
G
where
G
(
x
)=(4
)
1
e
|
x
|
/
4
and
∈
R
isafree
parameter(thecirculationReynoldsnumber).Itturnsoutthatthelinearizationof(1.3)at
G
hasthesameformas(1.2),inthesensethatthegeneratorcanbewrittenasadierence
L
,where
L
isaself-adjointoperatorintheweightedspace
L
2
(
R
2
,G
1
d
x
)andisa
skew-symmetricperturbation.Theanalogygoesevenfurtherifweconjugate
L
withthe
Gaussianweight
G
1
/
2
andifweneglectanonlocal,lower-ordertermintheperturbation.The
linearizedoperatorthenbecomes
21x||261H
e
=
+
+
f
˜(
x
)
∂
,x
∈
R
2
,
(1.4)
2where
∂
=
x
1
∂
2
x
2
∂
1
and
f
˜(
x
)=(2
|
x
|
2
)
1
(1
e
|
x
|
/
4
).Theoperator
H
in(1.1)isaone-
dimensionalanalogof
H
e
,andthelimit
→
0correspondstothefastrotationlimit
→∞
.
Remarkthat,inthisparticularexample,thefunction
f
˜hasauniquecriticalpointlocatedat
theorigin,anddecreasestozerolike
|
x
|
2
as
|
x
|→∞
.
Theaimofthispaperistostudythespectralandpseudospectralpropertiesofthelinear
operator
H
inthelimit
→
0.Besidesthespecicmotivationsexplainedabove,thisquestion
hasitsowninterestfromamathematicalpointofview,andturnsouttoberelativelycomplex.
Wehavetodealwithanon-self-adjointproblemof(almost)semiclassicaltypewhichexhibitsa
competitionbetweenvariousmicrolocalmodelsatdierentscales,dependingonthestructure
ofthecriticalpointsandthedecayrateatinnityofthefunction
f
.Inparticular,unlikeinthe
self-adjointcase,oreveninsomenon-self-adjointproblemssuchasthekineticFokker-Planck
operator(see[10,13,14]),thepseudospectralestimatesarenotmonotonewithrespecttothe
imaginarypartofthespectralparameter.Nevertheless,themodel(1.1)issimpleenoughso
thattheanalysiscanbepushedquitefar,andwebelievethatourresultsgiveagoodideaof
thephenomenathatcanbeexpectedtooccurinmoregeneralsituations.Wealsomentionthat
thespectraltheoryofnon-self-adjointoperators,especiallyinthesemiclassicallimit,isatopic
ofcurrentinterest[24,3,4,23].
Westartwithafewbasicobservationsconcerningtheoperator
H
.Asiswellknownthelim-
itingoperator
H
∞
=
∂
x
2
+
x
2
isself-adjointin
L
2
(
R
)withcompactresolvent,anditsspectrum
2