SOS Preliminary Version

icon

15

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

15

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur
SOS 2007 Preliminary Version Bi-inductive Structural Semantics (Extended Abstract) Patrick Cousot 1 Département d'informatique, École normale supérieure, 45 rue d'Ulm, 75230 Paris cedex 05, France Radhia Cousot 2 CNRS & École polytechnique, 91128 Palaiseau cedex, France Abstract We propose a simple order-theoretic generalization of set-theoretic inductive definitions. This general- ization covers inductive, co-inductive and bi-inductive definitions and is preserved by abstraction. This allows the structural operational semantics to describe simultaneously the finite/terminating and infi- nite/diverging behaviors of programs. This is illustrated on the structural bifinitary small/big-step trace/relational/operational semantics of the call-by-value ?-calculus. Keywords: fixpoint definition, inductive definition, co-inductive definition, bi-inductive definition, structural operational semantics, SOS, trace semantics, relational semantics, small-step semantics, big-step semantics, divergence semantics, abstraction. 1 Introduction The connection between the use of fixpoints in denotational semantics [17] and the use of rule-based inductive definitions in axiomatic semantics [10] and structural operational semantics (SOS) [19,20,21] can be made by a generalization of inductive definitions [1] to include co-inductive definitions [8].

  • inductive structural

  • order-theoretic inductive

  • finite behaviors

  • big-step trace

  • join can

  • behaviors while avoiding

  • evaluate e2

  • e1 either

  • semantics

  • fixpoint definition


Voir icon arrow

Publié par

Nombre de lectures

86

Langue

English

SOS 2007 Preliminary Version

E jE1 2
E a E =)a1 1
1
2
This is a preliminary version. The nal version will be published in
Electronic Notes in Theoretical Computer Science
alsoCNRSech&the?cco-inductivoleSOSpsolytemachnique,ze91128ofPalaiseancauterminatecqeD?pdex,inductivFthenrehaanc7eeAbstractusWaluationed'Ulm,prop.osewww.enseignea.simpleorder-theoreticticsgeneralizationyof1set-theoretic8inductivgedescribingdenitions.]Thisbgeneral-necessaryizationehacothevviors.ershoiceiwhereneitherductiv,e,orco-inductiv@ekandPb?rieurif-indouctivRaeoledenitionsatricandBi-inductivisepreservgeneralizationeddenitionsbtoydenitionsabstraction.ItThisossiblealloewsaltheinput/outputstructural[opaserationalcludesemanviorsticsThistothedescribinniteecannotsimedultaneouslybtheehn1.1itheteerator/terminatingFandein-dexnite/div(returniergingaluebPariseha45vesioorrsrofoprogcrams.aThisprofs/informatique/RadisiiillustrattedaonltheCstructuralwww.di.ens.binitarysupsmall/big-stepd'informatique,trace/relational/opCousoterationalAbstract)semanStructuralticseofdthebcall-bay-vofalueeCousot[-calculus.]Keyworincludeds:exp[oin].tisdenition,pinductivtoeendenition,ralico-inductivnaturesemanticsdenition,nitebi-inductivbeviorsdenition,12structuralsooptoerationalinsemaninnitetics,ehaSOS,[trace].semanistics,sincerelationaldenitionsemanthetics,bsmall-stepviorssemanbtics,derivbig-stepfromsemannitetics,ig-stepdbivaergenceExamplesemanLettics,considerabstraction.c1opInetrorduction05,Thethconnevecoftieoterminatesnngbvetcwwritteneen75230therueuse)ofdoxpnotoine,tsiin.denotationalCsemanticsu[n17e]sandtthefusetof,rule-basedment.polytechnique.fr/inductivhia.Cousot/erdenitionspinusaxiomaticosemanticsnRadhiadh2ey]uand.structuroal@opter,ationfr/alcousot/semanticsnormale(SOS)?c[artement191,k20P,(Extended21Seman]ecanb[10P. Cousot & R. Cousot
E =)? E E =)b1 2 2
b E =)?2
E1
E2
E E1 2
a b
E a E1 2
b
E b E2 1
a
E E1 2
ajb =)a ajb =)b :
?j? =)?
?jb =)b ?jb =)b ?jb =)b
?jb =)? ?jb =)? ?jb =)? ?jb =)?
aj? =)a aj? =)a aj? =)a
aj? =)? aj? =)? aj? =)? aj? =)?
2
h}(U); i U hD;vi
h}(U); i
h}(U); i

othcorrespstructuralondpartialingterpreterniteilbbig-stepeitherbinductionehaofviors,easersetdescribt-to-left:edco-inductivinbnaturalimplemensemanpapticstional[viors12The],bareofallthedenedincludesasmfolloThisws:semanaluatetheevco-inductionornresultevitsandreturndenitionseitherwhicthendanddescribaluate7evconsistst:systemsleft-to-rightheButevforMixedthereturncasedeniMixedev;denitionsorandresultngailable7ves,foutheThisinnitethebstruc-ehabviorsyaretiallPrologdierenleft-to-right:resultNon-deter-devPthearalleluctivMixedopleft-anMixedenablerighat-bEagerbministicsimto-righslyt8to-leftmethoaextendingrstprothe1returnre-andoheduling,bsc;eciedunivunspyanresultwithBey,inductivyandtlevconcurrenthisandco-inductivaluateitsevandarallel:ePx;ealuatedenitionsev8toalsoorcompaluatetionsevintoorinitiallyimadedenitionsisticshoicey-vcdenitionternalniinviorsaninniteNondeterministic:theerator:taopohoice(e.g.cinthewithfortticsaluation).semanTheossibleerpelopseralillustratessevuseconsider"bi-induse"Letinnon-termination.era-forsemorticsreturninghaluationbevnitaryingnterminat-innitaryaehafortoiseofedticsultansemanoubig-step[the,,].Similarlygeneral).dology(writteninTheHterminate.ertothofb[if]resultsyeitherplacingreturnpandwandothreturnaluateandEager:Since;ththeeersenaturalbsemanaticsorderdenesitsthe.niteondbclassicalehaeviorstionsbutrighnaluateoort,theextensiondivtheergingebresultehareturnv-theniors,aluateanbi-inductivindenitionsterpretationiofitheinductivbig-stepandevealuation[rules,its].-calculus.extensionecoptrowithanositionalbig-stepdenisemanasthatndesdenotationalerationalticstoSOS.othisonllustratedergenyandofergensemanbofviorscall-bprograms.aluecompasWHorninclausesduceimplemenoriginaltedtraceinticsProloggiv[op2meaning,b9c]vwillthadivvteehaitsofdivTheergingositionalbturalehamixesvforiorstedehaetermandiforned2bP. Cousot & R. Cousot
L L
L hL; i
4
0 08‘2 L :jf‘ 2 Lj‘ ‘gj2N jSj S N
‘ ::= ‘ ;:::;‘1 nQ
0 0 0‘ ‘ ;:::;‘ f‘ ;:::;‘ g =f‘ 2Lj‘ ‘g0 1 n 1 n‘‘
L a b xjx aj a b
ax a a a b b a b a b a b
L
‘2L hD ;v ;‘ ‘
? ;ti‘ ‘
‘2L X Y‘ ‘
D ‘‘
8‘2L :D =D‘
‘2 L ‘Q
x hx; i2 i2i i ‘i2‘ Q
7!S S S‘ i2‘
ii2 F 2D ‘ ‘‘
0 0 0 0D :::D 7 !D n =jf‘ 2Lj‘ ‘gj f‘ ;:::;‘ g =f‘ 2Lj‘ ‘g‘ ‘ ‘ 1 nn1
in = 0 F 2D 7 !D‘ ‘‘
v‘
8i2 ‘ ;:::;‘ ‘ X;Y 2D ;X 2D ;:::;X 2D X v Y =)‘ 1 n ‘ 1 ‘ n ‘ ‘1 n
i iF (X;X ;:::;X )v F (Y;X ;:::;X )1 n 1 n‘‘ ‘
‘2 L g 2 ( 7 !D )7 !D‘ ‘ ‘‘
thattics.big-stepsemansamenaturaltransformersoraig-steptbastandardabstrac-thethetointhenvfor(inducingthdeetupleisofinformativelemenergentssoundandWticstracesemanenrelationalergingawtoell-foundabstractedcomp=onrstequivisinductivs-monotoneceticti2semanticstracebbig-stepallThecsucalonghsequencesthatsoundabstraction.theyticsbofedsetderivimagessystematicallyeacenethsiderareehaticsissemanonotherctTheewrong.agoformalizethateviorsproaformshbepbWerroneousalexcludesdenitions.opFmoropexample,programs.fort,thedescriblanguageytics.ofcomplamjoinbbdaetermsorderedsemanwrite,completetracewhen,the.relational.e.v::=lbig-stepofThisascases.ofonite.Fwelemet),thetheeenc,reexivwirreexivedcanadenewhilewtraceettbtacticrulesthe.oofto,relationduplicationsemanoidingsyntaxvWaWhenand,whilevviorsdenitionsehastructuralb.soassumedsemandierentracetheir::=rameter,big-stepin,,Theder-the.2.1In,caseenosemanstructuralthati.e.hsynbtax-directederationalreasoninge-bisshoneeded,viorsviors.alsocandivbconesemancshosengeneratedasinaorsingletonsynantd,ehaThisascollectingfalse.semanFborindexedeac(totallyhsets).synetacticiscompandonen(tthatbconsideringnitesequencesamebig-step,andwsemanedescribconsidertheaconsemanticergingdomainetheemtotseadescriborinaticsectorabstracteddivwriteleftthenhasis.canorticshwhicneandisbassumedoftosequence,beeonatransformersdirectedthecompleteepartialisorderset,(dcpeo).wFthereforeorviorseactheh.synwheretacticrelationcomponenonensubtsynwstriHenceasers).and,understowbeandconsidernaturalvariablesbinarybasmlanguage,ofuthene,alence....their.vrangingwohaveerandtheesemanorder-theoreticticofdomaintlTheraare.toWeeducedropintherstsubscriptatuthatwhentrotheecorrespdenitionsondinginductivesemanorticordomainStructuristioncleartheirfromandthestructuralconBi-inductivtexttics.(e.g.erationalthesmall-stepsemaneticmoredomainucisethecansamesemanfor:allasedsyntractacticwscoThismpofonenehatserroneousi.e.butaergennt,ofvsetestheticsis-stepabstractionm,theareb).tracesFthatorincompleteeacFheasynhtactictacticcomponenonenbuttissettheofabstractionTheseytraces.,transitionswyetics,letsmall-stepcardinalittheh3isP. Cousot & R. Cousot
v 8hX; i2 i :8hY; i2 i : (8i2i ‘ i ‘‘j Y j Y
:X v Y ) =) ( X )v ( Y )i i i i‘ ‘ ‘‘ ‘
i2 i2‘ ‘ Y j
g( X ) = Xi i‘ ‘
i2 i2‘ ‘
Xi


g2 (D D )7 !D‘ ‘ ‘‘ Y j
v g( X ), Xi i‘ ‘ ‘
i2 i2‘ ‘
t D‘ ‘
j Y
v‘ i 08‘2L :S J‘K = X F (X; S J‘K)f f‘‘
0i2 ‘‘‘
v
v hP;vi
0 0f‘ ;:::;‘ g =f‘ 2 Lj ‘ ‘g1 n
j
v‘ i8‘2L :S J‘ ::= ‘ ;:::;‘ K = X F (X;S J‘ K;:::;S J‘ K) :f 1 n f 1 f n‘‘
i2‘
8‘2L :S J‘Kf
j j
v‘i iF (S J‘ K;:::;S J‘ K) X F (S J‘ K;:::;S J‘ K)f 1 f n f 1 f n‘ ‘‘ ‘
i2 i2‘ ‘j
v 0i ‘ iF (S J‘ K;:::;S J‘ K) X F (S J‘ K;:::;S J‘ K)f 1 f n f 1 f n‘ ‘‘
0i2fig
hS J‘K; ‘2Li v hX ; ‘2Lie ‘‘
8 j Q
i> 0X = F (X ; X )< ‘ ‘ 0 ‘‘ ‘‘‘
i2‘
>:
‘2L :
hS J‘K; ‘2Li v hX ; ‘2Lie ‘ ‘
8 j Q
i> F (X ; X0)v X< 0‘ ‘ ‘ ‘‘ ‘‘‘
i2‘
>:
‘2L :
wshouldhasbbinaryesystemconsideredsatisfyinginupptheomptotalForderdenedgivaendierenbAysignican=wiselfpusedtoosition,assumedtermthyee..isbsequencelfp.(lub)Mostboften,seman.compthe-lehTheorderquations)ofespresenletlfpotationpof-lethesebalternativjoinessysteminandtheisformaledenitionmaistonotbformthethebhasIndenitiononstrointdorform:with-domainoutAjointheewriteoponenthat(factsatisfyingthecaintstheeratorimplicitgathervingformalwherebrevitlfpebstructurale.leawriteisonentwisetheinpartiallyastdenedeassooftenasmahthesucthetsof=quationslfpsettjustoincase,oinThxpassumed.joinxpyaseencompassed.etbewithalformcanleastjoiner-leastound,thisoroftcnaint-iaseodenitionxpthenotheneedingticDenitionst.d..denexpliswelcisonentwiseciativande,astcommtutativ-monotonee,).andjoin.theAnofeonstrquational(inedenitionophasisthetoform:alternativwhicin,denitions.-monotone,orasy2.1alsoLemmawjoincompbinaryemphasizeaTof,isetheosetcaomprator4onP. Cousot & R. Cousot
X‘
v ‘2L;i2 ‘ ‘Y
i 0F (X ; S J‘K)‘ r‘
0‘‘
hD ;vi‘ ‘
X v S J‘K‘ r‘
v ‘2L; X 2D ;i2 ‘ ‘ ‘ ‘Y
i 0F (X ; S J‘K)v S J&

Voir icon more
Alternate Text