Reflections on Concrete Incompleteness

icon

23

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

23

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur
Reflections on Concrete Incompleteness? Giuseppe Longo Laboratoire d'Informatique CNRS – Ecole Normale Superieure, Paris et Crea, Ecole Polytechnique Abstract. How do we prove true, but unprovable propositions? Godel produced a statement whose undecidability derives from its “ad hoc” construction. Concrete or mathematical incompleteness results, instead, are interesting unprovable statements of Formal Arithmetic. We point out where exactly lays the unprovability along the ordinary mathemat- ical proofs of two (very) interesting formally unprovable propositions, Kruskal-Friedman theorem on trees and Girard's Normalization Theo- rem in Type Theory. Their validity is based on robust cognitive perfor- mances, which ground mathematics on our relation to space and time, such as symmetries and order, or on the generality of Herbrands notion of prototype proof. Introduction: some history, some philosophy Suppose that you were asked to give the result of the sum of the first n integers. There exist many proofs of this simple fact (see [Nelsen93] for this and more examples), an immediate one (allegedly (re-)invented by Gauss at the age of 7 or so) is the following: 1 2 ... n n (n-1) ... 1 (n+1) (n+1) ... (n+1) which gives ?n1 i = n(n+ 1)/2.

  • herbrand's prototype proofs

  • cognitive perfor- mances

  • prototype proof

  • purely formal

  • formal

  • negative results

  • must provide

  • poincare


Voir icon arrow

Publié par

Nombre de lectures

101

Langue

English

ReflectionsonConcreteIncompleteness?GiuseppeLongoLaboratoired’InformatiqueCNRSE´coleNormaleSupe´rieure,ParisetCrea,E´colePolytechniquehttp://www.di.ens.fr/users/longoAbstract.Howdoweprovetrue,butunprovablepropositions?Go¨delproducedastatementwhoseundecidabilityderivesfromits“adhoc”construction.Concreteormathematicalincompletenessresults,instead,areinterestingunprovablestatementsofFormalArithmetic.Wepointoutwhereexactlylaystheunprovabilityalongtheordinarymathemat-icalproofsoftwo(very)interestingformallyunprovablepropositions,Kruskal-FriedmantheoremontreesandGirard’sNormalizationTheo-reminTypeTheory.Theirvalidityisbasedonrobustcognitiveperfor-mances,whichgroundmathematicsonourrelationtospaceandtime,suchassymmetriesandorder,oronthegeneralityofHerbrandsnotionofprototypeproof.Introduction:somehistory,somephilosophySupposethatyouwereaskedtogivetheresultofthesumofthefirstnintegers.Thereexistmanyproofsofthissimplefact(see[Nelsen93]forthisandmoreexamples),animmediateone(allegedly(re-)inventedbyGaussattheageof7orso)isthefollowing:12...nn(n-1)...1(n+1)(n+1)...(n+1)whichgivesΣ1ni=n(n+1)/2.Clearly,theproofisnotbyinduction.Givenn,auniformargumentispro-posed,whichworksforanyintegern.FollowingHerbrand,wewillcallproto-typethiskindofproof.Ofcourse,oncetheformulaisknown,itisveryeasytoproveitbyinduction,aswell.But,onemustknowtheformula,or,moregener-ally,the“inductionload”.Anon-obviousissueinmathematics,asweallknow(atthisregards,wewilldiscussbelowthecaseoftheNormalizationTheoremsinTypeTheory).?InPhilosophiaMathematica,19(3):255-280,OxfordU.P.jounal,2011.ApreliminaryversionofthispaperwasanInvitedLecture“OntheproofsofsomeformallyunprovablepropositionsandPrototypeProofsinTypeTheory”attheconferenceonTypesforProofsandPrograms,Durham,(GB),publishedinLNCSvol.2277(Callaghanetal.eds),pp.160-180,Springer,2002.
Let’snowspeculateonthepossible“cognitive”pathwhich“bringsto”(andgivescertainty!)tothisproof.Thereadercansurelysee,inhismentalspaces,the“numberline”asadiscretesequence,thatisthewell-orderedsequenceofintegernumbers.Theyarethere,oneaftertheother,inincreasingorder:youmayseeitonastraightline,itmayoscillate,butitshouldbe,foryou,fromlefttoright(isn’tit?pleasecheck...andgiveupdoingmathematics,ifyoudonotseethenumberline;see[Dehaene98]forsomedataaboutit).Wheninventingaprooflikethis,onemustfirstseeorputtheorderedsequenceonpaperandthenhavethementalcourageto...reverseit,byamirrorsymmetry.Noinduction,justtheorderanditsinverse,asymmetry,andtheproofworksforanyn,aperfectlyrigorousproof.Considernowanon-emptysubsetinyournumberline.Youcansurely“see”thatthissethasaleastelement.Lookandsee:ifasetofintegernumbersonyournumberlinecontainsanelement,thereisaleastoneamongthefinitelymanyprecedingit,evenifyoumaynotknowwhichone.The“observation”imposesitselftoanypersonwithsomemathematicaltraining:itisthe(well-)orderingofthenumberline,asgeometricevidence,averyrobustone(seebelowformoreonthiscommuncognitiveperformanceinmathematics).Moreover,onedoesnotneedtoknowifandhowthesubseteventuallygoestoinfinity:ifithasonepointsomewhere(thesetisnotempty),thisisatsomefinitepointand,then,thereisasmalleronewhichistheleastofthe“given”subset.Intheconclusion,wewillcallthis,a“geometricjudgement”.Inthefewlinesabove,wehintedtoanunderstandingoftheorderingofnumberswithreferencetoamentalconstruction,inspace(ortime).Fregewouldhavecalledthisapproach“psychologism”(Herbart’sstyle,accordingtohis1884book).Poincare´insteadcouldbeareferenceforthisviewoncertaintyandmeaningofinductionasgroundedonintuition,possiblyofspace.InBrouwer’sfoundationalproposalaswell,themathematician’sintuitionofthesequenceofnaturalnumbers,whichfoundsMathematics,reliesonaphenomenalexperience;however,thisexperienceshouldbegroundedonthe“discretefallingapartoftime”,as“twoness”(“thefallingapartofalifemomentintotwodistinctthings,onewhichgiveswaytotheother,butisretainedbymemory”,[Brouwer48]).Thus,“Brouwer’snumberline”originatesfrom(adiscreteformof)phenomenaltimeandinductionderivesmeaningandcertaintyfromit.Intuitionoforderinginspaceortime,actuallyofboth,contributestoestab-lishthenumberline,asaninvariantoftheseactiveexperiences:formalinduc-tionfollowsfrom,itdoesn’tfoundthisintuition.ThisismyunderstandingofPoincare´’sandBrouwer’sphilosophy,bycombiningboththough,astheinvariantmaybeconstructedonlyonthebasisofmanyindependenthumanconstitutiveactivitiesinspaceandtime.Themanifoldedphenomenalexperiencesyieldtheindependence,asconceptualinvariant,ofthemathematicalstructure.Byrecentscientificevidence(see[Dehaene98],[LongoVia10]),weseemtouseextensively,inreasoningandcomputations,the“intuitive”numberline;theseneuropsycho-logicalinvestigationsareremarkablefacts,sincetheytakeusbeyondthe“intro-spection”thatthefoundingfathersusedastheonlywaytogroundmathematics
Voir icon more
Alternate Text