Niveau: Supérieur
Proof and refutation in MALL as a game Olivier Delandea, Dale Millera, Alexis Saurinb,a aINRIA Saclay - Ile-de-France and LIX/Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France bUniversita degli Studi di Torino, Corso Svizzera 185, 10149 Torino, Italy Abstract We present a setting in which the search for a proof of B or a refutation of B (i.e., a proof of ¬B) can be carried out simultaneously: in contrast, the usual approach in automated deduction views proving B or proving ¬B as two, possibly unrelated, activities. Our approach to proof and refutation is described as a two-player game in which each player follows the same rules. A winning strategy translates to a proof of the formula and a counter-winning strategy translates to a refutation of the formula. The game is described for multiplicative and additive linear logic (MALL). A game theoretic treatment of the multiplicative connectives is intricate and our approach to it involves two important ingredients. First, labeled graph structures are used to represent positions in a game and, second, the game playing must deal with the failure of a given player and with an appropriate resumption of play. This latter ingredient accounts for the fact that neither player might win (that is, neither B nor ¬B might be provable).
- games
- con- taining only positive
- proof system
- also classify
- refutations can
- positive sequent
- rules
- asynchronous phase