Niveau: Supérieur, Master, Bac+5
Optimal Hölderian functional central limit theorems for uniform empirical and quantile processes Djamel Hamadouche Laboratoire de Mathématiques Faculté des Sciences Université M. Mammeri Tizi-Ouzou Algérie Charles Suquet Laboratoire P. Painlevé (UMR 8524 CNRS) U.F.R. de Mathématiques Bâtiment M2 Université des Sciences et Technologies de Lille F-59655 Villeneuve d'Ascq Cedex France Abstract Let Ho? be the Hölder space of functions x : [0, 1] ? R such that |x(t + h)? x(t)| = o(?(h)) uniformly in t ? [0, 1], where ?(h) = h?L(1/h) with 0 < ? < 1 and L is normalized slowly varying. Denote by ?pgn the polygonal smoothing of the uniform empirical process. We prove that ?pgn converges weakly in H o ? to the Brownian bridge B if and only if h1/4 = o(?(h)). We also prove that the polygonal smoothing ?pgn of the uniform quantile process converges weakly in Ho? to B if and only if h1/2 ln(1/h) = o(?(h)). Keywords : Brownian bridge, empirical process, Hölder space, quantile process random polygonal line, spacings. MSC 2000 : 60B12, 60F17, 62G30.
- exponential random variables
- let u1
- distribution function
- hölder spaces
- process
- uniform quantile
- topological framework than
- continuous functions
- random variable
- limit theorems