36
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe et accède à tout notre catalogue !
Découvre YouScribe et accède à tout notre catalogue !
36
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Publié par
Langue
English
OptimalAssignmentofDurableObjectstoSuccessive
Agents
∗
FrancisBloch
†
NicolasHouy
‡
September29,2009
Abstract
Thispaperanalyzestheassignmentofdurableobjectstosuccessivegenerationsof
agentswholivefortwoperiods.Theoptimalassignmentruleisstationary,favorsold
agentsandisdeterminedbyaselectivityfunctionwhichsatisfiesaniterativefunc-
tionaldi
ff
erentialequation.Morepatientsocialplannersaremoreselective,asare
socialplannersfacingdistributionsoftypeswithhigherprobabilitiesforhighertypes.
Thepaperalsocharacterizesoptimalassignmentruleswhenmonetarytransfersare
allowedandagentsfacearecoverycost,whenagents’typesareprivateinformation
andwhenagentscaninvesttoimprovetheirtype.
JELClassificationNumbers:C78,D73,M51
Keywords:
DynamicAssignment,DurableObjects,RevenueManagement,Dy-
namicMechanismDesign,OverlappingGenerations,PromotionsandIntertemporal
Assignments.
∗
WearegratefultoGabrielleDemange,PhilippeJehielandseminaraudiencesatNUS(Singa-
pore)andPSE(Paris)fortheircomments.Correspondence:
francis.bloch@polytechnique.edu
and
nhouy@free.fr
.
†
DepartmentofEconomics,EcolePolytechnique,91128PalaiseauFrance,tel:+331693330
45,francis.bloch@polytechnique.edu
‡
DepartmentofEconomics,EcolePolytechnique,91128PalaiseauFrance,tel:+331693330
15,nhouy@free.fr
1
1Introduction
Thispaperconsidersdurableobjectswhicharesuccessivelyreassignedtoagents.
Theprimeexampleofobjectswhichareregularlyreassignedarepositionsinor-
ganizationsandbureaucracies,likeexecutiveo
ffi
cesordiplomaticpostings.Other
examplesincludeo
ffi
ces,roomsindormitories,computerservers,largescalescien-
tificequipmentliketelescopesandparticleaccelerators,hotelroomsandrentalcars.
Inalltheseexamples,agentsaregiventemporarypropertyrightsoverthedurable
objectforagivenperiod,andcannotbeforcedtoreturntheobject.Thesetempo-
rarypropertyrightscreateaconstraintontheoptimalassignmentpolicychosenby
abenevolentsocialplanner,andourobjectiveinthispaperistocharacterizethe
e
ffi
cientdynamicassignmentofadurableobjecttosuccessivegenerationsofplayers
takingintoaccounttheseindividualrationalityconstraints.
Weconsiderenvironmentswhereoverlappinggenerationsofagentsenterthemar-
ketdeterministically,andagentsareassignedtheobjectfortheirentirelifetime.
Agentsdi
ff
erintheirvaluationsfortheobjects,ortheirqualificationsforthepo-
sitions.Agentscharacteristicsarethustwo-dimensionalandincludeatypewhich
determinesthevalueoftheassignment,andanagewhichdeterminesthelengthofthe
assignment.Ourobjectiveinthispaperistocharacterizeoptimalassignmentrules
inthistwo-dimensionalmodel,andconstructrevelationmechanismswhenagents’
typesareprivatelyknown.
Thebasictrade-o
ff
betweenageandvalueisbestunderstoodinatwo-period
overlappinggenerationsmodel.Whenassigningthegoodtoanoldoryoungagent,
thesocialplannermakesthefollowingcomputation.Assigningthegoodtotheold
agentforoneperiodhasapositiveoptionvalue,asthegoodcanbereassignedatthe
endoftheperiod;assigningthegoodtotheyoungagentfortwoperiodsprevents
theplannerfromreassigningthegoodimmediately.Hence,iftheoldandgood
agentswereofthesametype,itwouldalwaysbeoptimaltoassignthegoodtothe
oldagent
.
1
Thislineofreasoningshowsthat,foranytype
θ
oftheyoungagent,
theplannerwillprefertogivetotheanyoldagentoftypegreaterorequalto
φ
(
θ
),
where
φ
(
θ
)
<
θ
.
Themaincontributionofthepaperistocharacterizetheselectivityfunction,
φ
(
θ
),whichisadoptedintheoptimalassignmentpolicy.Thisfunctionisdefinedby
aniterativefunctionaldi
ff
erentialequation,whichissimilartotheequationsused
inphysicsandmathematicstostudydynamicalsystemswithstate-dependentde-
1
Theoptionvalueofgivingapositiontoanolderagentisawelldocumentedhistoricalfact.
Forexample,thehistoryofthepapacyrecordsanumberofelectionswherecardinalsvoluntarily
chosetheoldestcandidate.Oftentimes,these”transitionpopes”turnouttobethemostenergetic
ande
ff
ectivepopesoftheirtimes.SeeCollins(2009)andhisaccountofthereignoftwofamous
”transitionpopes”,JohnXXII(1316-1334)andJohnXXIII(1958-1965).
2
lay(Eder1984).Whilewecannotprovideanaanalyticalsolutiontothefunctional
di
ff
erentialequation,weproveexistenceanduniquenessoftheoptimalassignment
policyandshowthattheselectivityfunctionisincreasingandconvex.Weillustrate
theoptimalassignmentpoliciesdorunfiromandquadratictypedistributions,and
derivecomparativestaticspropertiesofthesolution.Undersomeregularitycon-
ditions,weshowthatwhenthediscountfactorincreases,orwhenthedistribution
oftypesisshiftedsothathighertypeshaveahigherprobability,thesocialplanner
becomesmoreselective,andassignstheobjecttotheyoungagentlessoften.
Inthesecondpartofthepaper,weconsiderdi
ff
erentextensionsofthemodel.
First,weanalyzetheoptimalassignmentpolicywhenmonetarytransfersareallowed
andagentscanbecompensatedwhentheyreturntheobject.Ifthereisnorecovery
cost,theoptimalassignmentpolicyisidenticaltothefirst-bestpolicywithoutindi-
vidualrationalityconstraints:theobjectisassignedateveryperiodtotheagentwith
thehighestvalue.Ifanoldagentwhocurrentlyholdstheobjecthasasmallervalue
thantheyoungagent,theyoungagentcaneasilytransfermoneyinreturnforthe
objectandtheindividualrationalityconstraintceasestobebinding.Withpositive
recoverycosts,theoptimalassignmentstrategybecomesmorecomplex,andinvolves
twodi
ff
erentselectivityfunctions,onewhichisusedatperiodswherenoagentholds
theobject,andonewhichisusedwhentheoldagentholdspropertyrightsoverthe
objectandneedstobecompensated.Wecharacterizetheoptimalassignmentpoli-
ciesassolutionstosystemsofdi
ff
erentialfunctionalequations,bothwithfixedand
proportionalrecoverycosts.Wealsoillustratethesecomplexassignmentstrategies
fortheuniformandquadraticdistributions.
Inasecondextensionofthemodel,weanalyzedirectrevelationmechanisms
whenthetypesoftheagentsareprivatelyknown.Giventhetimestructureofthe
assignmentrule,wecanbuilddi
ff
erentmodelsofrevelationmechanisms.Inthefirst
model,wesupposethatagentsareaskedtorevealtheirtypeswhentheyentersoci-
etyasyoungagents,whethertheobjectisreassignedornot.Inthesecondmodel,
weassumethatagentsareonlyaskedtorevealtheirtypes(andpayatransfer)at
periodswherethegoodisreassigned.Forbothmodels,weusestandardarguments
tocharacterizetransferrulesimplementingtheoptimalassignmentpolicy.Notsur-
prisingly,thesetransferrulesinvolveastepfunction,wheretransfersjumptoaflat
positivevaluewhentheagent’stypereachesthethresholdvalueforwhichthegood
isassignedtoher.
Finally,weinvestigatetheagents’incentivestoinvestinordertoimprovetheir
typesbetweenthetwoperiodsoftheirlives.Inthatmodel,ayoungagentwhodoes
notreceivethegoodinthefirstperiodhasanincentivetoinvestinhistypeboth
inordertoincreasetheprobabilityofreceivingtheobjectwhenold,andtoincrease
3
thevalueofthematch.Inthismodel,thesocialplanners’optimalassignmentpolicy
andtheagents’incentivestoinvestaredeterminedsimultaneously,asthesolutions
toasystemofdi
ff
erentialequation.Again,whileweareunabletosolvethesystem
analytically,weprovideanumericalillustrationofthesolutionsfortheuniformand
quadraticdistributions.
Axiomaticcharacterizationsofassignmentrulesfordurablegoodshaverecently
beenstudiedbyKurino(2008)andBlochandCantala(2008).Kurino(2008)con-
sidersadynamicextensionofAbdulkadirogluandSo¨nmez(1999)’sstudyofhouse
allocationwithexistingtenants–thefirstexampleofanassignmentproblemwith
individualrationalityconstraints–,andanalyzeswhethertherulesproposedinthe
staticpaperstillsatisfye
ffi
ciencyandincentivecompatibilityinthedynamiccontext.
BlochandCantala(2008)consideramodelwhereagentsareassignedtodi
ff
erent,
verticallyrelatedobjects,andcharacterizeMarkovianassignmentruleswhichsat-
isfymyopice
ffi
ciencyandfairness.Bycontrast,inthispaper,weconsiderasimpler
modelwhereagentsonlylivetwoperiodsandcanonlybeassignedonegood.Inthis
simplermodel,weareabletocharacterizedynamicallye
ffi
cientrules,andtodiscuss
theincentivepropertiesoftransferrules.
Thispaperisalsorelatedtotherapidlygrowingliteratureondynamicmecha-
nismdesign.ParkesandSingh(2003),AtheyandSegal(2007),Bergemannand
Valima¨ki(2006)andGershkovandMoldovanu(2008a,2008b,2008c)studydy-
namicassignmentproblems,whereagentsentersequentially,andparticipateina
Vickrey-Clarke-Grovesrevelationmechanismwhichdeterminestransfersandgood
allocations.TheyshowthatVickrey-Clarke-Grovesmechanismsandoptimalstop-
pingrulescanbecombinedtoobtaine
ffi
cientdynamicmechanisms.Inthesemod-
els,objectscanonlybeassignedonceatthetimeofentry.Someofthesestudies
(likeGershkovandMoldovanu(2008b,2008c))distinguishbetweenbenevolentand
revenue-maximizingplanners.Whenagents’typesareknown,theliteratureonyield
managementinmanagementscienceandoperationsresearch(seeTalluriandVan
Rysin(2004))providesanin-depthstudyofoptimalpricingstrategies.
Therestofthepaperisorganizedasfollows.WeintroducethemodelinSection
2.Weanalyzee
@