153
pages
Français
Documents
2005
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
153
pages
Français
Documents
2005
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Publié par
Publié le
01 octobre 2005
Nombre de lectures
14
Langue
Français
Poids de l'ouvrage
3 Mo
Publié par
Publié le
01 octobre 2005
Nombre de lectures
14
Langue
Français
Poids de l'ouvrage
3 Mo
oN d’ordre : 2262
Thèse
présentée pour obtenir le titre de
DOCTEUR DE L’INSTITUT NATIONAL POLYTECHNIQUE DE
TOULOUSE
Ecole doctorale : Energétique et Dynamique des Fluides
Spécialité : Dynamique des Fluides
Etude statistique de la conductance d’un joint
d’étanchéité statique
par Frédérique FLUKIGER
Soutenue le 18 octobre 2005 devant le jury composé de
MM. D. Salin Président du jury - Rapporteur
P.M. Adler Rapporteur
M. Prat Directeur de thèse
F. Plouraboué Co-Directeur de thèse
D. Lasseux Membre
J. Frêne Excusé
L. Boccaletto InvitéRemerciements
Tout d’abord, je tiens à adresser mes profonds remerciements à mes directeurs
de thèse, Messieurs Franck Plouraboué et Marc Prat. Avec une approche totalement
différente mais très complémentaire, vous m’avez fait découvrir un sujet intéressant
doté d’une problématique riche. Ces trois années auront été très enrichissantes, tant
d’un point de vue scientifique qu’humain.
Je remercie l’ensemble des personnes du GDR, dirigé par Monsieur Jean Frêne.
Les discussions et les confrontations ont toujours été très intéressantes et m’ont
permis de comprendre à quel point le problème étudié est vaste et complexe. Je
tiens à remercier plus particulièrement deux personnes : Monsieur Philippe Sainsot,
qui m’a fourni les modules de déformation de la partie élastique du code de calcul,
et Monsieur Luca Boccaletto, ingénieur au CNES, qui a suivi mon travail pendant
ces trois années.
JeremercieMonsieurOlivierSimonin,directeurdel’IMFT,pourm’avoiraccueilli
au sein de son laboratoire. Je profite de cette page pour remercier l’ensemble du
personnel technique, et plus particulièrement les services Informatique, COSINUS
et la reprographie, qui se sont toujours montrés disponibles lorsque j’ai eu besoin
de leur aide : Gilles Martin, Charles Nicolas, Alexei Stoukov, Hervé Neau, Annaïg
Pedrono, Muriel Sabater.
J’adresse mes remerciements les plus chaleureux à Monsieur Eric Ducasse, qui
a bien voulu m’envoyer le polycopié du cours de "Mathématiques du signal, de la
décision et du contrôle des systèmes linéaires" de l’ENSAM de Bordeaux que j’avais
perdu et à Madame Caroline Le Calvez, qui m’a généreusement accueillie lors de
son cours d’"Algorithmique et Programmation" à l’INSA de Toulouse.
Je tiens à remercier l’ensemble des personnes qui ont participé au jury de ma
thèse, et plus particulièrement les rapporteurs, Monsieur Dominique Salin, directeur
du FAST et Monsieur Pierre-Marie Adler, directeur de recherche à l’IFGP : ils ont
bien voulu lire et corriger ce document, et m’ont fait l’honneur de juger ce travail.
Dans mon parcours, plusieurs personnes ont contribué à me donner goût à la
recherche, et plus généralement à la science. Certaines ont beaucoup influencé mes
choix et mon travail comme Monsieur Bouroz, professeur de mathématiques et phy-
sique au collège, Madame Colin, professeur de mathématiques en classes prépara-
toires. D’autres m’ont offertl’opportunité de fairece qui me tenait àcœur. Je citerai
ici Madame Azita Ahmadi et Monsieur Didier Lasseux, avec qui j’ai effectué mon
premier stage en recherche. Ils ont su me donner envie de persévérer sur cette voie.Je remercie l’ensemble des collègues de GEMP, notamment Damien, Typhaine,
Laurent, Pauline, Franck, Oxa, Bruno, Xavier, XS, et plus particulierement ceux
avec qui j’ai partagé mon bureau : Sébastien, Olivier, Farfadet, Laurent, Mehdi. Qui
va me chanter des chansons maintenant! Je n’oublie pas les visiteurs occasionnels
(enfin, pas tant que ça) Kathrin et Laura.
Finalement, je tiens à remercier toute les personnes qui m’ont soutenue, et plus
particulièrement ma famille : mes parents, Blandine et Gérard, ainsi que Anne et
Jean-Marie; mes grands-parents, Monique, Liliane, Pierre et Gilbert; mes beaux-
parents, Martine et Michel; ma belle-soeur Audrey; mon petit frère Guillaume; et
bien sûr Benoit. Lors de mes études, j’ai toujours été très libre, et très supportée :
vous avez su donner votre avis, sans prendre les décisions à ma place. Ensemble,
nous avons partagé et nous partageons les moments heureux et ceux plus difficiles.
Que serais-je sans vous!
Merci BenTable des matières
Nomenclature v
1 Introduction générale 1
1.1 A propos des joints d’étanchéités . . . . . . . . . . . . . . . . . . . . 2
1.2 La géométrie du contact . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Les modèles d’écoulements . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 L’approche du problème . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Code de calcul réseau 19
2.1 Génération du champ d’ouverture . . . . . . . . . . . . . . . . . . . . 19
2.1.1 Création de la surface et de ses dérivées . . . . . . . . . . . . . 21
2.1.2 Interpolation d’une surface discrète . . . . . . . . . . . . . . . 22
2.2 Création du réseau de percolation . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Caractéristiques géométriques des points critiques d’une surface 23
2.2.2 Méthodes de recherche . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Le tri-casier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.4 Création des liens . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.5 Evolution du réseau . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.6 Seuil de percolation . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.7 Détermination de l’amas percolant : la recherche en profondeur 31
2.3 Calcul de la conductance à l’échelle du pavé . . . . . . . . . . . . . . 32
2.3.1 Calcul de la conductance locale des liens . . . . . . . . . . . . 32
2.3.2 Calcul de la conductance globale . . . . . . . . . . . . . . . . 33
2.4 Performances du code. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.1 Evaluation des ordres de grandeur . . . . . . . . . . . . . . . . 35
2.4.2 Evolution des temps de calcul . . . . . . . . . . . . . . . . . . 36
2.4.3 Mémoire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3 Comportementnon-universeldelaconductanced’unefractureGaus-
sienne 39
iii TABLE DES MATIÈRES
3.1 Probabilité de percolation . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.1 Calcul du seuil de percolation . . . . . . . . . . . . . . . . . . 40
3.1.2 Comparaison avec des cas classiques . . . . . . . . . . . . . . . 43
3.2 Distribution des conductances locales . . . . . . . . . . . . . . . . . . 45
3.2.1 Propriétés géométriques au col avant contact . . . . . . . . . . 46
3.2.2 La conductance électrique . . . . . . . . . . . . . . . . . . . . 48
3.2.3 La conductance hydraulique . . . . . . . . . . . . . . . . . . . 48
3.3 Calcul de la conductance à l’échelle du pavé . . . . . . . . . . . . . . 50
3.3.1 Calcul de la conductance électrique G . . . . . . . . . . . . . 511
3.3.2 Calcul de la conductance hydraulique G . . . . . . . . . . . . 553
3.3.3 Comparaison avec des cas classiques . . . . . . . . . . . . . . . 60
3.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4 Calcul de la conductance hydraulique à l’échelle du joint . . . . . . . 66
3.4.1 Quelques statistiques . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.2 Reconstruction du joint . . . . . . . . . . . . . . . . . . . . . 69
3.4.3 Probabilité de percolation . . . . . . . . . . . . . . . . . . . . 71
3.4.4 Moyennes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.5 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4.6 Une autre méthode . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4.7 Comparaison . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4 Les déformations élastiques 79
4.1 Formulation du problème de contact . . . . . . . . . . . . . . . . . . 80
4.1.1 Mise en place du problème . . . . . . . . . . . . . . . . . . . . 80
4.1.2 Résolution du problème . . . . . . . . . . . . . . . . . . . . . 81
4.2 Mise en oeuvre dans le code . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.1 Visualisation de l’impact des déformations élastiques . . . . . 83
4.2.2 Adimensionnalisation des résultats . . . . . . . . . . . . . . . 84
4.2.3 Relation charge - déplacement . . . . . . . . . . . . . . . . . . 85
4.3 Résultats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.1 Impact des déformations élastiques sur le seuil de percolation . 86
4.3.2 Impact sur la conductance locale . . . . . . . . . . . . . . . . 87
4.3.3 Impact sur la conductance globale . . . . . . .