Minimally connected graphs

icon

66

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

66

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur
Decomposition Connectivity Minimally 2-connected graphs Critically 2-connected graphs Open questions Decomposition theorems for classes of graphs defined by constraints on connectivity Nicolas Trotignon — CNRS — LIAFA Universite Paris 7 Danish Graph Theory Meeting April – May 2011

  • connected graphs

  • danish graph

  • links between

  • decomposition connectivity

  • universite de paris

  • theory meeting

  • every subgraph

  • open question


Voir icon arrow

Publié par

Nombre de lectures

16

Langue

English

DecompositionConnceitivytiMinamy2llon-cctnegredshpatirClaci-2ylecteconnphsOdgraeutsepqnoisn
Danish Graph Theory Meeting April – May 2011
Decomposition theorems for classes of graphs defined by constraints on connectivity
Nicolas Trotignon — CNRS — LIAFA Universite´Paris7
eDpmoctisoCnoilayl-2ocnnceetgdonnectivityMinimtcennoc-shpargderisCphray2llcatiquesOpenstion
Outline
Minimally 2-connected graphs
1
2
Critically 2-connected graphs
Open questions
3
gredctneenOphsapnoitseuqsnnec2-coraphtedgitacCsirc-noll2ycsihpargAycerevifsslerdhoroldse.scyelsihc
Denitions
A graph isminimally 2-connectedif it is 2-connected and the removal of any edge yields a graph that is not 2-connected.
DeallyinimityMctivnoenoiCnsotiocpm
eDpmocneonivctitosnCiopashderguqsepOnelly2ticanect-congdetcennirCshpariminyMitco2-lyalontis
A graph isminimally 2-connectedif it is 2-connected and the removal of any edge yields a graph that is not 2-connected.
A graph ischordlessif every cycle is chordless.
Denitions
phsOdgraecteconniLknoisneutsepqnlerdhocenweetsbyllaminimdnasssitionCoDecompoytiMinamnnceitivctnegredy2llon-claci-2ylshpatirC-2ocnnceetd
Plummer’s observations [1968]:
A graphGis chordless if and only if for every subgraphH, eitherHhas connectivity at most 1, orHis minimally 2-connected. A 2-connected graph is chordless if and only if it is minimally 2-connected.
G
has
basic
or
G
is
Theorem(L´evˆeque,Maray,NT2009)
Let G be a chordless graph. Then either decomposition.
a
Decomposing chordless graphs
uenqpesOnsiostcennoc-2hpargdetnnCotiectyviniMiDmoceisopnoitgraphsCriticallyamll2yc-noentcde
Voir icon more
Alternate Text