Localization for Random Unitary Operators Eman Hamza

icon

15

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

15

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur, Licence, Bac+2
Localization for Random Unitary Operators Eman Hamza University of Alabama at Birmingham Department of Mathematics CH 452 Birmingham, Al 35294-1170 U.S.A. Alain Joye Institut Fourier Universite de Grenoble, BP 74 38402 Saint-Martin d'Heres France Gunter Stolz? University of Alabama at Birmingham Department of Mathematics CH 452 Birmingham, Al 35294-1170 U.S.A. Prepublication de l'Institut Fourier n0 673 (2005) Abstract We consider unitary analogs of 1?dimensional Anderson models on l2(Z) defined by the product U? = D?S where S is a deterministic unitary and D? is a diagonal matrix of i.i.d. random phases. The operator S is an absolutely continuous band matrix which depends on a parameter controlling the size of its off-diagonal elements. We prove that the spectrum of U? is pure point almost surely for all values of the parameter of S. We provide similar results for unitary operators defined on l2(N) together with an application to orthogonal polynomials on the unit circle. We get almost sure localization for polyno- mials characterized by Verblunski coefficients of constant modulus and correlated random phases. AMS classification numbers: 82B44, 42C05, 81Q05 Keywords: Localization, random unitary operators, orthogonal polynomials. ?partially supported through US-NSF grant DMS-0245210 1

  • model alluded

  • unitary operators

  • diagonal matrix

  • spectral measure

  • adjoint anderson model

  • almost surely

  • introduction unitary operators

  • random variable


Voir icon arrow

Publié par

Langue

English

LocalizationforRandomUnitaryOperatorsEmanHamzaAlainJoyeUniversityofAlabamaatBirminghamInstitutFourierDepartmentofMathematicsCH452Universite´deGrenoble,BP74Birmingham,Al35294-117038402Saint-MartindHe`resU.S.A.FranceGu¨nterStolzUniversityofAlabamaatBirminghamDepartmentofMathematicsCH452Birmingham,Al35294-1170U.S.A.Pre´publicationdel’InstitutFouriern0673(2005)http://www-fourier.ujf-grenoble.fr/prepublications.htmlAbstractWeconsiderunitaryanalogsof1dimensionalAndersonmodelsonl2(Z)definedbytheproductUω=DωSwhereSisadeterministicunitaryandDωisadiagonalmatrixofi.i.d.randomphases.TheoperatorSisanabsolutelycontinuousbandmatrixwhichdependsonaparametercontrollingthesizeofitsoff-diagonalelements.WeprovethatthespectrumofUωispurepointalmostsurelyforallvaluesoftheparameterofS.Weprovidesimilarresultsforunitaryoperatorsdefinedonl2(N)togetherwithanapplicationtoorthogonalpolynomialsontheunitcircle.Wegetalmostsurelocalizationforpolyno-mialscharacterizedbyVerblunskicoefficientsofconstantmodulusandcorrelatedrandomphases.AMSclassificationnumbers:82B44,42C05,81Q05Keywords:Localization,randomunitaryoperators,orthogonalpolynomials.partiallysupportedthroughUS-NSFgrantDMS-02452101
Voir icon more
Alternate Text