10
pages
English
Documents
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
10
pages
English
Documents
Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres
Publié par
Langue
English
KineticmethodsforLine–energyGinzburg–Landaumodels
Pierre-EmmanuelJabinandBenoˆtPerthame
DepartementdeMathematiques
etApplications,UMR8553,
EcoleNormaleSuperieure,45,rued’Ulm,
75230ParisCedex05,France
July17,2002
Abstract.
Aclassofvariationalproblemsarisinginthinmicromagneticlmorinthegradient
theoryofphasetransitionsexhibitanhyperbolicbehavior,asurprisingpropertybeinggiven
theirnaturalellipticstructure.Thesetwo–dimensionalGinzburg–Landauproblemsare,forin-
stance,characterizedbyenergydensityconcentrationsonaone–dimensionalset-comparable
toasteadyshockwave.Herewereviewhowmethodsbasedonkineticformulationscanhelpto
understandsomefeauturesofthisbroadandfascinatingclassofproblems.Especiallywededuce
ageneralregularityresultandalsowecharacterizethezero-energystatesandthedomainswhere
theycanoccur.
Keywords.
Ginzburg–Landauenergy,vortices,kineticformulation,averaginglemmas,Sobolev
spaces.
AMSClass.Numbers.
35B65,35J60,35L65,74G65,82D30.
Contents
1Typicalexamples
2kineticformulation
3Agenericregularityresult
4Vorticesandzeroenergystates
1346
1Typicalexamples
AmongthewidesubjectofGinzburg-Landauvariationalproblems,atypicalproblemistostudy
thelimitastheparameter
ε
vanishes,fordivergencefreefunctionsin
R
2
withaniteGinzburg-
Landauenergy.Namely,weconsiderfunctions
u
ε
:
R
2
→
R
2
(
asmoothdomainof
R
2
)
suchthat
1
div
u
ε
=0in
,u
ε
n
=0on
∂
,
(1.1)
where
n
denotestheouterunitnormaltotheboundary
∂
of
R
2
,and,inthis
weakly
constrained
casetheenergyis
E
ε
(
u
ε
)=
ε
|r
u
ε
|
2
+1(1
|
u
ε
|
2
)
2
.
(1.2)
ZZε
Roughlyspeaking,thesemodelsintroducedinJin&Kohn[17],Ambrosio,DeLellis&Man-
tegazza[4],DeSimone,Kohn,Muller&Otto[9])comethroughdimensionalreductionofathree
dimensionalGinzburg–Landau–typemodelinathinlmandsingularlydependonthesmall
parameter
ε
proportionaltothelmthickness.Theyariseinmanyphysicalsituationslike
smecticliquidcrystals,softferromagneticlms,inblisterformationor—moreabstractly—in
thegradienttheoryofphasetransition(see[10]andthereferencestherein).Duetothevariety
ofthesesituations,tothecomplexityofthereductionandthenecessityofmathematicalsimpli-
cations,severalothermodelsareofinterest.ForinstanceRiviere&Serfaty[23]considerthe
stronglyconstrained
casewheretheconstraintisgivenby
|
u
|
=1in
,
(1.3)
whereasthefunctionalis
E
ε
2
(
u
)=
ε
|r
u
|
2
+1
|r
1
div
u
|
2
,
(1.4)
ZZε2R
whereforthelastterm,
u
hasbeentrivially(thatis,byzero)extendedonall
R
2
.Morerecently
amodelretainingthethreedimensionalaspectoftheseproblemshasbeenstudiedbyAllouges,
Riviere&Serfaty[2].
Manyanalyticalmethodsarisetostudythesekindsofproblems.Especially,variationalanaly-
sisarisesnaturally,
SBV
-typespaces,geometricalmeasuretheory
...
Thesereectstheelliptic-
ityoftheproblem.Moresurprisinglyentropies,compensatedcompactness,kineticformulations
andaveraginglemmasalsohelptoprovidepiecesofinformations.Thesereectsthehyperbolic
featureofthelimit
ε
→
0.
Inthispaperwewishtoillustrateaparticularpointwhichiswhy
kineticformulations
arise
andwhatkindofinformationitcanprovide.Letusinsistthatalternativetoolshavealso
beenusedintheabovementionedpapersandmostoftheresultsexplainedherecanbederived
dierently.Itseemshoweverthatthekineticstruturewhichariseshereisfascinatingenoughto
havealookatit,andespeciallytofurtherinvestigateinthesetermsthedierencebetweenthe
twomodelsmentionedaboveandalsotheirvariants.
Beforedoingthat,wewouldlikehowevertospendsometimetoexplainthehyperbolicaspect
inthelimit
ε
→
0intheseproblemsfollowing[9].Thisformallyappearsverynaturallybecause
inthislimitweobtain
|
u
|
=1
,
div
u
=0
,
2
)5.1(
in
.Intwodimensionsthisistypicallyascalarconservationlawwhichcanbealsoseenas
∂
cos(
)
∂
sin(
)
.0=+∂x
1
∂x
2
Thequestionistoprove(orasconjecturedfor(1.1),(1.2),rathertodisprove)thatitisthe
entropysolution.Anotherrelatedpointofviewistotransformtheproblemin
u
=
r
T
(
x
)
,
|r
|
=1
.
Thenthequestionistoknowweither(orratherwhynotinthecaseof(1.1),(1.2))
isthe
viscositysolutiontotheaboveeikonalequation.Alsonoticethatthisone-dimensionalaspect
ofthesingularsetmakesthisproblemverydierentformtheusualtwodimensionalGinzburg-
Landauproblem[6]wherepointvorticesappear,orofthethreedimensionalvortextubesasin
AftalionandJerrard[1].
Thepaperisorganizedasfollows.Thesecondsectionexplainswhyakineticformulationis
naturalhere,thethirdsectionshowstheregularitythatcanbededucedfromaveraginglemmas,
thelastsectionisdevotedtothecharacterizationofzeroenergystates.
2kineticformulation
Thekineticformulationarisesnaturallyinthelimitas
ε
vanishesintheproblem(1.1),(1.2).
Theoriginalmotivationcomesfromanargumentdevelopedin[9]andwhichisbasedona
familyofentropiesadaptedtothelimitaswrittenin(1.5)(dierententropiesarealsobuiltin
[17]whichproducesomewhatdierentproperties).And,thekineticformulationsintroducedin
Lions,PerthameandTadmor[19],[20]aimexactlytorepresentafullfamilyofentropiesbya
singlegenerating‘equilibrium’function,denotedby
below,bymeansofintegrationofanextra
variable.Thishastheadvantagetoreplaceaninnitefamilyofinequalitiesbyasingleequation
inahigherdimensionspace.Theextravariable,denotedby
inthispaper,ishomogeneoustoa
velocityandisthuscalledthekineticvariable.InthecontextofLine–energyGinzburg–Landau
modelsitcanbeintroduceddrectlythroughasimpleandgenerallemmawhichproofcanbe
foundinJabinandPerthame[14].
Lemma2.1
Foranysmoothfunction
u
de