Introduction Our contributions Conclusion

icon

87

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

87

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur
Introduction Our contributions Conclusion Efficient Indifferentiable Hashing into Ordinary Elliptic Curves Eric Brier1 Jean-Sebastien Coron2 Thomas Icart2 David Madore3 Hugues Randriam3 Mehdi Tibouchi2,4 1Ingenico 2Universite du Luxembourg 3TELECOM-ParisTech 4Ecole normale superieure CRYPTO, 2010-08-16

  • ordinary elliptic

  • efficient indifferentiable

  • curve over

  • hashing into

  • deterministic hashing

  • introduction elliptic curves

  • elliptic curve


Voir Alternate Text

Publié par

Nombre de lectures

11

Langue

English

Introduction
Ecient
Our contributions
Indierentiable Elliptic
E´ricBrier1 David Madore3
Hashing Curves
Jean-S´ebastienCoron2 Hugues Randriam3
1Ingenico
2uLexe´udsrtiinevUrgmbou
3TELECOM-ParisTech
´ 4nelocEureieerp´sulemaor
into
Ordinary
Thomas Icart2 Mehdi Tibouchi2,4
CRYPTO, 2010-08-16
Conclusion
Introduction
Introduction Elliptic curves Hashing to elliptic curves Deterministic hashing
Our contributions Admissible encodings A general construction An efficient construction Side contributions
Conclusion
Our contributions
Outline
Conclusion
Introduction
Introduction Elliptic curves Hashing to elliptic curves Deterministic hashing
Our contributions Admissible encodings A general construction An efficient construction Side contributions
Conclusion
Our contributions
Outline
Conclusion
Introduction
Our contributions
Elliptic curve cryptography
Ffinite field of characteristic>3 (for simplicity’s sake). Recall that an elliptic curve overFis the set of pointsx,yF2 such that: y2=x3+ax+b
Conclusion
(witha,bFfixed parameters), together with a point at infinity. This set of points forms an abelian group where the Discrete Logarithm Problem and Diffie-Hellman-type problems are believed to be hard (no attack better than the generic ones). Interesting for cryptography: forkbits of security, one can use elliptic curve groups of order22k, keys of length2k. Also come with rich structures such as pairings.
Introduction
Our contributions
Elliptic curve cryptography
Ffinite field of characteristic>3 (for simplicity’s sake). Recall that an elliptic curve overFis the set of pointsx,yF2 such that: y2=x3+ax+b
Conclusion
(witha,bFfixed parameters), together with a point at infinity. This set of points forms an abelian group where the Discrete Logarithm Problem and Diffie-Hellman-type problems are believed to be hard (no attack better than the generic ones). Interesting for cryptography: forkbits of security, one can use k elliptic curve groups of order22, keys of length2k. Also come with rich structures such as pairings.
Introduction
Our contributions
Elliptic curve cryptography
Ffinite field of characteristic>3 (for simplicity’s sake). Recall that an elliptic curve overFis the set of pointsx,yF2 such that: y2=x3+ax+b
Conclusion
(witha,bFfixed parameters), together with a point at infinity. This set of points forms an abelian group where the Discrete Logarithm Problem and Diffie-Hellman-type problems are believed to be hard (no attack better than the generic ones). Interesting for cryptography: forkbits of security, one can use elliptic curve groups of order22k, keys of length2k. Also come with rich structures such as pairings.
Introduction
Our contributions
Elliptic curve cryptography
Ffinite field of characteristic>3 (for simplicity’s sake). Recall that an elliptic curve overFis the set of pointsx,yF2 such that: y2=x3+ax+b
Conclusion
(witha,bFfixed parameters), together with a point at infinity. This set of points forms an abelian group where the Discrete Logarithm Problem and Diffie-Hellman-type problems are believed to be hard (no attack better than the generic ones). Interesting for cryptography: forkbits of security, one can use elliptic curve groups of order22k, keys of length2k. Also come with rich structures such as pairings.
Introduction
Introduction Elliptic curves Hashing to elliptic curves Deterministic hashing
Our contributions Admissible encodings A general construction An efficient construction Side contributions
Conclusion
Our contributions
Outline
Conclusion
Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text