How Risky is the Random Oracle Model

icon

21

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

21

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur, Master
How Risky is the Random-Oracle Model? Gaetan Leurent1 and Phong Q. Nguyen2 1 DGA and ENS, France. 2 INRIA and ENS, France. Abstract. RSA-FDH and many other schemes secure in the Random- Oracle Model (ROM) require a hash function with output size larger than standard sizes. We show that the random-oracle instantiations proposed in the literature for such cases are weaker than a random oracle, including the proposals by Bellare and Rogaway from 1993 and 1996, and the ones implicit in IEEE P1363 and PKCS standards: for instance, we obtain a practical preimage attack on BR93 for 1024-bit digests (with complexity less than 230). Next, we study the security impact of hash function defects for ROM signatures. As an extreme case, we note that any hash collision would suffice to disclose the master key in the ID-based cryptosystem by Boneh et al. from FOCS '07, and the secret key in the Rabin-Williams signature for which Bernstein proved tight security at EUROCRYPT '08. We also remark that collisions can be found as a precomputation for any instantiation of the ROM, and this violates the security definition of the scheme in the standard model. Hence, this gives an example of a natural scheme that is proven secure in the ROM but that in insecure for any instantiation by a single function.

  • collision

  • oracle

  • hash functions

  • hmac-md5

  • security proof

  • secret key

  • random-oracle instantiations

  • hash function defects

  • output size

  • md5


Voir icon arrow

Publié par

Nombre de lectures

23

Langue

English

HowRiskyistheRandom-OracleModel?Gae¨tanLeurent1andPhongQ.Nguyen21DGAandENS,France.http://www.eleves.ens.fr/leurent/2INRIAandENS,France.http://www.di.ens.fr/~pnguyen/Abstract.RSA-FDHandmanyotherschemessecureintheRandom-OracleModel(ROM)requireahashfunctionwithoutputsizelargerthanstandardsizes.Weshowthattherandom-oracleinstantiationsproposedintheliteratureforsuchcasesareweakerthanarandomoracle,includingtheproposalsbyBellareandRogawayfrom1993and1996,andtheonesimplicitinIEEEP1363andPKCSstandards:forinstance,weobtainapracticalpreimageattackonBR93for1024-bitdigests(withcomplexitylessthan230).Next,westudythesecurityimpactofhashfunctiondefectsforROMsignatures.Asanextremecase,wenotethatanyhashcollisionwouldsufficetodisclosethemasterkeyintheID-basedcryptosystembyBonehetal.fromFOCS’07,andthesecretkeyintheRabin-WilliamssignatureforwhichBernsteinprovedtightsecurityatEUROCRYPT’08.WealsoremarkthatcollisionscanbefoundasaprecomputationforanyinstantiationoftheROM,andthisviolatesthesecuritydefinitionoftheschemeinthestandardmodel.Hence,thisgivesanexampleofanaturalschemethatisprovensecureintheROMbutthatininsecureforanyinstantiationbyasinglefunction.Interestingly,forbothoftheseschemes,aslightmodificationcanpreventtheseattacks,whilepreservingtheROMsecurityresult.WegiveevidencethatinthecaseofRSAandRabin/Rabin-Williams,anappropriatePSSpaddingismorerobustthanallotherpaddingsknown.1IntroductionTheRandom-OracleModel(ROM),inwhichhashfunctionsareviewedasran-domoracles,goesbacktoatleastFiatandShamir[17].PopularizedbyBellareandRogaway[1],ithasbeenthesubjectofmuchdebate.Ontheonehand,itiswidespreadinresearchpapersandstandards,becauseROMschemesareusuallymoreefficient,theirsecurityproofscanbebasedonwell-studiedassumptions,andcansometimesbetight.Infact,manystandardizedpublic-keyschemesare,atbest,onlyprovensecureintheROM,e.g.RSA-OAEP[2]andRSA-PSS[3].Ontheotherhand,theROMisnotanassumption(onthehashfunction):thereisnorandom-oracledefinitionwhichapublicfunctioncanhopetosatisfy.Asecurityproofinthestandardmodel(SM)preciselygivesassumptionswhicharesufficienttoensuresecurityproperties.Bycontrast,aROMsecurityproofonlyshowsthatanattackwhichdoesnotbreaktheproofassumptionsmustexploitapropertynotsatisfiedbytherandom-oraclesimulationofthesecurityproof.ThisallowedCanettietal.[10]tobuildsignatureandencryptionschemeswhichare
secureintheROM,butinsecureforany(efficient)implementationoftherandomoracle,becausesuchimplementationscanbesimulatedbyaUniversalTuringmachine,andthereforebedistinguished[33]fromarandomoracle.However,theconstructions[10,33,20,4]showingthelimitationsoftheROMarearguably“un-natural”andsignificantlydifferfromreal-worldconstructions.Still,oneshouldbecarefulwithidealizedsecuritymodels:likeallMerkle-Damga˚rd/Davies-Meyerhashfunctions,MD5wasprovablycollision-resistant[50,7](uptothebirthdaybound)intheidealciphermodel(withrespecttotheblockcipherunderlyingthecompressionfunction);yet,computingMD5collisionsonlycostsafewsecondsnow[43].ThisstressestheimportanceofstudyingtheactualsecurityofschemesprovenintheROM.Unfortunately,veryfewROMschemeshavealsobeenprovensecureintheSM[42,8];andforseveralcases,thereisevidencethatasecurityproofintheSMisunlikely[34,39,15,28].Recentbreakthroughsinthecryptanalysisofhashfunctions[48,47,45]haveshownthatstandardhashfunctionslikeMD5orSHA-1arefarfrombehavinglikerandomoracles.However,theimpactonthepublic-keyworldhasbeenlimitedsofar,withtheexceptionof[45],whichconstructstwocollidingX.509certificatesfordifferentidentitiesandpublickeys,andhasrecentlybeenextendedin[43]toconstructarogueCAcertificate.Buttostudytheactualsecurity,oneneedstoknowhowtherandomora-clewillbeinstantiatedinpractice,shouldtheschemeeverbeused.Often,therandom-oracleoutputsizematchesthatofstandardhashfunctions(like160bitsforSHA-1)ortheupcomingSHA-3.Inthiscase,standardhashfunctionsaremostlikelytobeused,despitewell-knownpropertiesofMD-iteratedhashfunctions(suchasthederivationofh(m1||m2)fromh(m1)andm2)whichmakethemeasilydifferentiablefromrandomoracles.ButRSA-FDH[3]andmanyotherROMschemes(suchas[24,12,13,27,6,19,9])actuallyrequirea“non-standard”hashfunction.First,theoutputmaynotbeauniformallydistributedbitstring:itcouldberesidueclasses,orellipticcurvepoints,etc.,fortunatelyitisknownhowtodealwithsuchsituationsgivenaninstantiationwitharbi-traryoutput{0,1}n.Butiftheoutputbit-lengthislargerthanstandardsizes(e.g.RSA-FDHwhichneedsatleast1024bits),itisunclearhowtheoraclewillbeinstantiated.Tothebestofourknowledge,theonlyproposalsofrandom-oracleinstantiationssupportingarbitraryoutbitbit-lengtharethefollowing:twohistoricalinstantiationsproposedbyBellareandRogawayintheirseminalpapers[1](ontheROM)and[3](onFDHandPSS),recentconstructionsbyCoronetal.inthefullversionof[14],andtheinstantiationsimplicitinPKCS#1v2.1[41]andIEEEP1363[23]standards.Itseemsthatnoneoftheseinstanti-ationshavebeenanalyzedintheliterature,except[14]intheindifferentiabilityframeworkofMaureretal.[33].Thisalsoraisesthequestionoftheimpactofpotentialdefectsinrandom-oracleinstantiations.WhenanarticleprovidesaROMsecurityproof,itusuallydoesnotsayhowtoinstantiatetherandomoracle,neitherwhatmighthappenifthehashfunctiondoesnotbehavelikearandomoracle.AssumethatAliceimplementsaschemeROM-secureunderawell-knowncomputationalassump-
Voir icon more
Alternate Text