Existence and stability of the log log blow up dynamics for

icon

42

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

42

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur, Licence, Bac+2
Existence and stability of the log-log blow-up dynamics for the L2-critical nonlinear Schrödinger equation in a domain Fabrice Planchon Laboratoire Analyse, Géométrie & Applications UMR 7539 du CNRS, Institut Galilée Université Paris 13, 99 avenue J.B. Clément 93430 Villetaneuse France Pierre Raphaël Laboratoire de mathématiques UMR 8628 du CNRS Université Paris-Sud 91405 Orsay Cedex France July 3, 2007 Abstract Let iut = ?∆u?|u| 4 N u be the L2-critical nonlinear Schrödinger equation, in a domain ? ? RN with initial data in H10 (?) (Dirichlet boundary condition) and N ≤ 4. We prove existence and stability of finite time blow-up dynamics with the log-log blow-up speed |?u(t)|L2 ? √ log|log(T?t)| T?t . Moreover, for a suitable class of finite time blow-up solutions, we derive global rigidity properties which turn out to be modeled after the RN ones. 1 Introduction 1.1 Setup and notations We consider the L2-critical focusing nonlinear Schrödinger equation in a domain ? with Dirichlet boundary condition: (1) (NLS) ? ? ? iut = ?∆u? |u| 4 N u, (t, x) ? [0, T )? ?, u|∂? = 0, u

  • finite time

  • up solution

  • minimal mass

  • mass finite

  • critical

  • time blow

  • u0 ?

  • l2-critical nonlinear


Voir icon arrow

Publié par

Nombre de lectures

36

Langue

English

2L
4 2Niu = u| u| u Lt
N 1
R H ( ) N 40
q
log|log(T t)|
|∇u(t)| 2 .L T t
NR
2L


4
N iu = u | u| u, (t,x)∈ [0,T)
,t
(NLS) u = 0,|∂

u(0,x) =u (x), u :
→C0 0
1 1u ∈H =H ( ) N 1 N = 20 0 0
(Dirichletbt(1)3,oundarynonlinearcondition)band8628neho&Planchr?.PW91405euniv-paris13.frpro.veeequationexistencebandastabilit7539y?eofaniteFtimersiteoratoireblofabrice.plancw-updimensiondynamicsonwiththethefolog-loghr?bloaw-upDiricspndaryeedUMRabriceequation,FnonlineardomaintheaInstitutinersiequation13,dingerAbstracthr?pierre.raphael@math.u-psud.frScynonlinearP-criticalCNRSthemath?matiquesforRapha?ldynamicshon@math.w-upFbloCl?menlog-loguethedimenofWyconsiderstabilitwithand-criticalbcusingWScreferdinger[9],infordomainreferences.withsuitablehletclassouofcondition:G?om?triApplicationsindomain,inproblemdingerinScon-criticalopticsdusemoCNRS,forGalilself-foUnivoft?tensearisb99inLetw2007whicJulyhranceturnCedexoutOrsatoaris-Sudb?eUnivmduoUMRdeleddeafterLabthePierredatawithinitialoratoireLabranceVilletaneuseones.193430Analyse,IntroinductionJ.B.1.1enSetupInandsinotationsnitevtimeblothisw-uparisessolutions,nwlineareadearivdeletheglobalcusingrigidiintlaseryeamspropholloertiescoreExistenceers.Moreoevtoer,[30]forfurthera1

1u ∈ H T > 0 u0 0
1u∈C([0,T),H )0
1H T = +∞
T < +∞ limsup |∇u(t)| 2 = +∞t↑T L
N
= R
N = 1,2

N 3

R R
2 2 2L : |u(t,x)| = |u (x)| ;0

R R 41 1 2+2 N: E(u(t,x)) = |∇u(t,x)| |u(t,x)| =E(u ).4 02

2+
N
N
= R

u ∈0R
2 1 2 2 2H ∩ = H ( ) ∩{xu∈ L ( ) } E(u ) < 0 V(t) = |x| |u(t,x)|00
Z Z Z
21 d 1 1 4 12 2+ 2
NV(t) = |∇u(x,t)| dx |u(t,x)| dx |∇un| xndx,
2 416dt 2 42+


N
n ∂

2d
V(t) 16E(u )< 002dt
V(t)
iωtu(t,x) = e W (x) Wω ω
(
4
NW +W |W | =ωW ,ω ω ω ω
(W ) = 0.ω |∂

N
= R Q (x)ω
Q Q = Q Q (x) =ω ω=1 ω
N 1
4 2ω Q(ω x)
E(Q ) =ωE(Q) = 0 |Q | =|Q| .2 2ω ω L L
qFrombislastinothaconserv,ationeslaandws,titonewillmaisydescriptionderivwemaptheupfollothewingsucclassicalthresult:solutionthe,pitoplawareertimenonellipticlinearittime;yCasefrome(1)radiallyis,theeesssmallesttities:onegralforofwhice.hglobal,blodata.w-upnormmaeysolutionoeciccur.talSucdynamicshsolitaryproniteotimetheblothatw-conupuoussolutionsthatare.knoawnsuctoaddition,existmfstsofromafromstareshaploedtodomain:eseet[13]hforconedbconserveous,w,andsolutionitsusgeneralizationtheforiltofuanpecometitnitetowithehandapwsedtime.dolmainainfor[14],theb(1).othsoproaofsasrelyingexistenceonontheresolvfollowingwing(3)virialrequired)idenuittitthatycally.conAssumeoforesakvefromoftheresimplicitpythatthattosystemtranslation.isalaLsmaxmthenoexothrstar-shapwingedholdsdomainaleandandletohozaevHamiltonian,nalvoell-pnsithmebnormidassumwheretheinniteinaneis(whic(1)isEquatione.tribution]the6oundary)[bseenegativomain,ThdbloexteriortheanorwithisisthewheneithereThlinitialailabofvwhae.theSetfunctionarearesultsositiverquansharpy;,hasforbwhilenegativ[1],inintime,tlytherecenbloobtaineduperenitewSptesamasolutionsestiye)fundamen,rolethentheaofsimpgenerallofeTheysequencetheofcalledcomputationwyieldsv(2)ahartz-likvided(StricisrofetheSharpundresults.bpreviouswhereallloincludingestheoremfolloanonlinearandequation:referencesafurtherandfornot[7]yseetin[26];uniforminnoteobtainedinas(lowtinitis,wdomaintheyassumeanwforer,andMoreodimension:In[3][12].[15],eloexistsVuniqueandositivGinibresolutiontohdue(1)and,wntoell-knoInwsolutionisisresultsymmetric.osednessetell-piwuniquecal,loandaihtheresucall,oorsense:Ffollo.inandfrtimescteinvarianci,n,wherePinidenisythewouterhanormaleEnergyosednwtoupcalwsat.hCertainlye,andondomainathestar-shapeedthereafterdomain,aWstars21Q ∀u ∈ H E(u) =
NE(Q) |u| 2 =|Q| 2 > 0 x ∈R ∈R u(x) =u u uL L
N
2 i u Q( x x )e .u u u

= B(0,1) N 2
ω < 0
0

∀ω >ω Q0 ω


|Q | 2 <|Q| 2 E(Q )> 0,ω L L ω
1
∀u ∈ H E(u) = E(Q )ω0

|u| 2 =|Q | 2 ∈RuL ω L

i uu(x) =Q (x)e .ω
1|u | 2 <|Q| 2 H0 L L 0
2L
!2RZ
2 N1 |u|1 2 R∀u∈H , E(u) |∇u| 1 .0 22 Q
N 1
=R u∈H ( )0
1 NH (R ) u

|u | 2 |Q| 20 L L
N
=R u(t,x)
2
|x|1 1 x i
4tv(t,x) = u( , )e .
N t t2|t|
ite Q(x)
2
|x|1 x ii +
4t tS(t,x) = Q( )e
N t2|t|
T = 0 |S(t)| 2 =|Q| 2 S(t)L L
1
|∇S(t)| 2 .L |t|
S(t)
n,then,theisortherehereholds:isnaryoAstiexzavricharacteappliedc,ariationalavthatwinghlow-upl[9].othfthethe,and[8],existsdispaanduniquesolutionpareositivtheseNote,that,bloieninathdomain,thenthiseinequalitandyrstfolloinwstofromvtheofcaseande[9].radialsymmetrysolutionthetoeassanvyanandof(3).stableMoreoevstateifcorollaryer,thereisuciwhicalupnitesakblosimplicitsolution,ytostsa.distributiontheineedLaplaciansihlet.Diricresultstheetofthealuefromber,yeextendingglobalv(1)osolutionfollo,iswinguniqueariationaloutsideharacterization(4)holds:.ifIn,addition,FthisseeconditionThisis,shtoarp:nonforersiv([31]):stationysolutioninequalitLionergebCazenaGagliardo-Nirenyieldsoptimalexplicitthe(6)withsensebinedincomorbitallynorm,guides,vbloww-upgroundma,yaothenccur.existsmmetries.,CasehvAssumedhanwsenergyat:forblowithw-upoffollothatwssucfromthatthedimenpseudio-conformaltheresymmetry:Noteifatofbloationsspconservforoth,bosolvnesW(1),recallthefromnLsobdeoMoreoeser,(5)[19],,fromeigenbythezerommanymbmassetimevieww-upedupassyMoreo3
S(t)
x˜ ∈
u(t)
1u(t,x) S(t,x x˜)→ 0 H t→ 0.
2L |u(t)| 2 =L
|Q| 2L
N
=R
NR
N
=R
Z Z Z
1 N 2 2 2 ˜u ∈B ={u ∈H (R ) Q |u | Q + }0 0 0
> 0
N = 1,2 S(t)
1S(t) |∇u(t)| 2 L T t

1
log|log(T t)| 2
|∇u(t)| 2 N = 2L T t
N = 1
1H
N
= +y∇,
2
N 1

2 4 4 2 41 1
N NL = + +1 Q y∇Q , L = + Q y∇Q,1 2
N N N
1ε =ε +iε ∈H1 2
H(ε,ε) = (L ε ,ε )+(L ε ,ε ).1 1 1 2 2 2
1˜ > 0 ∀ε ∈ H (ε ,Q) = (ε ,Q) =1 1 1
2(ε ,yQ) = (ε ,Q) = (ε , Q) = (ε ,∇Q) = 01 2 2 2
Z Z
2 2 | y|˜H(ε,ε) ( |∇ε| + |ε| e ).1
typeconstructedSchrClassicationw-upeensatisesbeeonwconstanealmeancriticalsolutionswwithinformationsblotruew-uptrateconstruvationhasolutionesituationypblottofbsolutionsfor,nodomain,generalthataerorpreciselynearforblotow-upromtime.andFaticOnethetheseotherthehand,(1)ncaseucmericalresultssimBanica,ulations,e[16],andwformalaargumenmmetryts,of[30],so-suggestresultexistenceopofdingersolutions(7)blo.winggivupsmalllik,eaywhicbas[4];conservseethe,rind[5]forbhaymass:e:ypasterturbativofdealsolutionsnitefdynamicsoresultsfamilyThenaaexistsnstherethe,suchBurq-1.2G?rard-Tifineendimensionhazvtimeetkcriticalosp.theInSomedimensionholdsdimensionwhicInpseudo-conformalv.hea,pP;ofremainstoccur:oknosolutionshvproblem.esalthe?existenceopofatorssucleasthAaMoresolution,andtits(explicit)stabilitsomeyenintheyactsubspacesolutionof(1)tohwnin.FThethesituationwithhofasnorm,btheeeneclariedvaluebquadryformMerletheseandsRapha?lvincriticalthe.seriesofof(8)papsolutionserswhere[22],e[20],p[21],with[25],unique[23],mass[28].withLetforusw-updeneontheMostdierentimetialtheropexistserauniversaltoroknotanareblohanismsinmecnpthatw-uKnoblo[2].t,dierenywhicobtainedhbwillvbsolutionsebloofniteconstanmassttheuse.eedThenupwbloeoninpreliminarytrodomain.duceinthelongerfollohwing(5),propsyertthey:vilySpreliesectralroPropitsertthenyw-upLlutionsetwhenoewbtwn.isConsiderathesuctwoNotereneerelman,an[27],pro4N = 1 Q
N = 2,3,4 N = 2
˜B
N
= R N =
1,2,3,4 > 0 C > 0
˜ u ∈ B u(t) [0,T)0
1H
u(t) 0<T < +∞
N 2((t),x(t),(t)) ∈ R R R u ∈ L+

1 x x(t) i (t) 2u(t) Q e →u L t→T.
N (t)2(t)
Nx(T)∈R
x(t)→x(T) t→T.
t T
1
2|∇u(t)| 2 T t 1Llim = √ ,
t→T |∇Q| 2 log|log(T t)| 2L
C(u )0|∇u(t)| .2L (T t)
E(u ) < 0 u(t)0
˜ u ∈ B0
u(t) 0 < T < +∞
1H
u T < +∞ u(t)
R> 0
Z
1 C 2 |u (x)| dx ,
2 2C (log|log(R)|) (log|log(R)|)|x x(T)| R
p 1u ∈/ L for p> 2. u(t) u ∈H .

existsforuladrthatformthenexplicitdatatheniteusingon[22],,suchthethat1ineedwithv.pro;aslwsyanertimpliespropexistasblow-upthisesp,(1)or.ingsupencriticalccaseprndalblow-upomputationsspinete(9)d:olefore[28])whiccloseyenoughameterstothenumeoint,,wechavesolutioneitherthe(10)upassgroundsingularity:RtheloofeDescriptionis(i)in.AsymptotLently,etsingularity:inofightinvolvesrsatisesthealonderivee(12)existencforofcintervaletimecmaximumsuchitsc.pL.etv.wingwithdescrib(1)thetoforsolution.ondingarespsatisesorrthencisthepethebsuchThertheororr(11)ondingeoverexistMoruniversaltoletblows,inctimeonstantsstate,assuchethatthetheg-lofolsporeF(10)true.oppin[22],c[20],(iv)holdsi(iii)ofeathertheStatemenassumeofoOurwhichinifpapnumericiscaddress(10),issuesforaldomainwas.smalusenough,thatdto[10]massdimensionssolutionswhich[5],oversarehophyviresultsalnitethatblolysolutionselevantaaseedrtimeasymptoticwithandtheWlohag-loegfollosptheoremehewhichdes(10).singularitMorformationeinitialgenerinalTheoremly,Ifthepseteof(11),initialth

Voir icon more
Alternate Text