Encoding Generic Judgments

icon

15

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

15

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur
Encoding Generic Judgments ? Dale Miller1 and Alwen Tiu2 1 INRIA-FUTURS and Ecole Polytechnique , 2 Pennsylvania State University and Ecole Polytechnique Abstract. The operational semantics of a computation system is often presented as inference rules or, equivalently, as logical theories. Specifi- cations can be made more declarative and high-level if syntactic details concerning bound variables and substitutions are encoded directly into the logic using term-level abstractions (?-abstraction) and proof-level ab- stractions (eigenvariables). When one wishes to reason about relations defined using term-level abstractions, generic judgment are generally re- quired. Care must be taken, however, so that generic judgments are not uniformly handled using proof-level abstractions. Instead, we present a technique for encoding generic judgments and show two examples where generic judgments need to be treated at the term level: one example is an interpreter for Horn clauses extended with universal quantified bodies and the other example is that of the pi-calculus. 1 Introduction The operational semantics of a programming or specification language is often given in a relational style using inference rules following a small-step approach (a.k.a., structured operational semantic [Plo81]) or big-step approach (a.k.a.

  • can also

  • bound variable

  • higher-order abstract

  • since provability

  • order pattern

  • capture rich

  • clause

  • syntactic category

  • horn clause


Voir icon arrow

Publié par

Nombre de lectures

14

Langue

English

EncodingGenericJudgments?DaleMiller1andAlwenTiu21INRIA-FUTURSandE`colePolytechniquedale.miller@inria.fr,2PennsylvaniaStateUniversityandE`colePolytechniquetiu@cse.psu.eduAbstract.Theoperationalsemanticsofacomputationsystemisoftenpresentedasinferencerulesor,equivalently,aslogicaltheories.Specifi-cationscanbemademoredeclarativeandhigh-levelifsyntacticdetailsconcerningboundvariablesandsubstitutionsareencodeddirectlyintothelogicusingterm-levelabstractions(λ-abstraction)andproof-levelab-stractions(eigenvariables).Whenonewishestoreasonaboutrelationsdefinedusingterm-levelabstractions,genericjudgmentaregenerallyre-quired.Caremustbetaken,however,sothatgenericjudgmentsarenotuniformlyhandledusingproof-levelabstractions.Instead,wepresentatechniqueforencodinggenericjudgmentsandshowtwoexampleswheregenericjudgmentsneedtobetreatedatthetermlevel:oneexampleisaninterpreterforHornclausesextendedwithuniversalquantifiedbodiesandtheotherexampleisthatoftheπ-calculus.1IntroductionTheoperationalsemanticsofaprogrammingorspecificationlanguageisoftengiveninarelationalstyleusinginferencerulesfollowingasmall-stepapproach(a.k.a.,structuredoperationalsemantic[Plo81])orbig-stepapproach(a.k.a.naturalsemantics[Kah87]).Ineithercase,algebraic(first-order)termscanbeusedtoencodethelanguagebeingspecifiedandthefirst-ordertheoryofHorncanbeusedtoformalizeandinterpretsuchsemanticspecifications.Forexample,considerthefollowingnaturalsemanticsspecificationofaconditionalexpressionforafunctionalprogramminglanguage:BtrueMVBfalseNV(ifBMN)V(ifBMN)VThesetwoinferencefigurescanalsobeseenastwofirst-orderHornclauses:BMNV[BtrueMV(ifBMN)V]BMNV[BfalseNV(ifBMN)V]Here,thedownarrowisanon-logical,predicatesymbolandanexpressionsuchasNVisanatomicformula.?AnearlierdraftofthispaperappearedinMERLIN2001[Mil01].
Voir icon more
Alternate Text