Deep Sea Research II

icon

22

pages

icon

English

icon

Documents

Écrit par

Publié par

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

22

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

Niveau: Supérieur, Licence, Bac+1
Deep-Sea Research II 49 (2002) 1765–1786 Biogenic silica production rates and particulate organic matter distribution in the Atlantic sector of the Southern Ocean during austral spring 1992 B. Qu!eguinera,*, M.A. Brzezinskib aCentre d'Oc!eanologie de Marseille, Laboratoire d'Oc!eanographie et de Biog!eochimie, Parc Scientifique et Technologique de Luminy, UMR CNRS 6535, Case 901, F-13288 Marseille Cedex 9, France bDepartment of Ecology, Evolution and Marine Biology, and the Marine Science Institute, University of California, Santa Barbara, CA 93106, USA Abstract Several of the components of the silicon cycleForthosilicic acid (Si(OH)4), biogenic silica (BSi), and biogenic silica production rates (rSi)Fhave been investigated, together with the distribution of particulate organic carbon (POC), particulate organic nitrogen (PON) and carbon primary production (rC), on a series of transects across three sub- systems in the Atlantic sector of the Southern Ocean (61W): the seasonal ice zone (SIZ), the permanently open ocean zone (POOZ), and the southern boundary of the polar frontal zone (PFZ). The study was conducted in Spring 1992 as part of the European SO-JGOFS cruise aboard the R.V. Polarstern. High BSi concentrations (maximum: 11.7 mmol Si l1) were recorded in late November at the southern border of the PFZ.

  • area during

  • zone de l'oc

  • ees

  • zone

  • mmol poc

  • production rate

  • bsi

  • southern ocean

  • jgofs cruise


Voir icon arrow

Publié par

Nombre de lectures

18

Langue

English

Poids de l'ouvrage

1 Mo

Deep-SeaResearchII49(2002)1765–1786BiogenicsilicaproductionratesandparticulateorganicmatterdistributionintheAtlanticsectoroftheSouthernOceanduringaustralspring1992B.Que!guinera,*,M.A.BrzezinskibaCentred’Oce!anologiedeMarseille,Laboratoired’Oce!anographieetdeBioge!ochimie,ParcScientifiqueetTechnologiquedeLuminy,UMRCNRS6535,Case901,F-13288MarseilleCedex9,FrancebDepartmentofEcology,EvolutionandMarineBiology,andtheMarineScienceInstitute,UniversityofCalifornia,SantaBarbara,CA93106,USAAbstractSeveralofthecomponentsofthesiliconcycleForthosilicicacid(Si(OH)4),biogenicsilica(BSi),andbiogenicsilicaproductionrates(rSi)Fhavebeeninvestigated,togetherwiththedistributionofparticulateorganiccarbon(POC),particulateorganicnitrogen(PON)andcarbonprimaryproduction(rC),onaseriesoftransectsacrossthreesub-systemsintheAtlanticsectoroftheSouthernOcean(61W):theseasonalicezone(SIZ),thepermanentlyopenoceanzone(POOZ),andthesouthernboundaryofthepolarfrontalzone(PFZ).ThestudywasconductedinSpring1992aspartoftheEuropeanSO-JGOFScruiseaboardtheR.V.Polarstern.HighBSiconcentrations(maximum:11.7mmolSil1)wererecordedinlateNovemberatthesouthernborderofthePFZ.Incontrast,nolargeBSibiomasswasfoundintheothersubsystemsstudied.IntheSIZ,nodiatombloomwasobserved,despiteasea-iceretreatof200kmduringthestudyperiod,andBSibiomassneverexceeded0.6mmolSil1.ThePOOZalsoshowedverylowBSibiomass(o0.5mmolSil1),andlowBSi/POCmolarratiosfromthesurfaceto200m(0.04–0.06at531S)suggestthatthiswasanareawherephytoplanktonwerenotdominatedbysiliceousorganisms.AtthesouthernborderofthePFZ,BSi/POCmolarratioswereamongthehighesteverrecordedinthesurfacewatersoftheSouthernOcean(maximum:1.33).ThiscouldbearesultofthepresenceofheavilysilicifieddiatomsoralsocouldreflectamorerapidrecyclingofPOCascomparedtoBSi.HighconcentrationsofBSi(>1.5mmolSil1)extendedwellbelowtheeuphoticzoneto200mdepthbetween491Sand511S,suggestingsignificantsedimentationofsiliceousparticlesinthatarea.HighvaluesofrSialsowereobservedinthePFZ(29.6–60.7mmolSim2d1,duringtheproductionmaximum)indicatingthatthissubsystemisimportantinthebiogeochemicalbudgetoftheSouthernOcean.Highdepth-integratedrSi/rC(0.25–0.46)andBSi/POC(0.53–0.85)inthePFZimplytheproductionofdiatomsrichinsilicacomparedtoorganicmatter.ThehighratesofsilicaproductionobservedinthePFZsupporttherecenthypothesisthattheformationoftheabyssalsiliceousoozesthatencirclemuchofAntarticaformprimarilyastheresultofhighlevelsofsilicaproductioninsurfacewatersratherthanasaresultofhighratesofopalpreservationashasbeensuggestedinthepast.r2002ElsevierScienceLtd.Allrightsreserved.R´esum´eLesrecherchespre!sente!esconcernentladistributiondeplusieursparame"tresducyclebioge!ochimiquedusiliciumFl’acideorthosilicique(Si(OH)4),lasilicebioge!nique(BSi)etlestauxdeproductiondesilicebioge!nique*Correspondingauthor.Tel.:+33-04-9182-9205;fax:+33-04-9182-1991.E-mailaddress:bernard.queguiner@com.univ-mrs.fr(B.Que!guiner).0967-0645/02/$-seefrontmatterr2002ElsevierScienceLtd.Allrightsreserved.PII:S0967-0645(02)00011-5
6671B.Que!guiner,M.A.Brzezinski/Deep-SeaResearchII49(2002)1765–1786(rSi)Fainsiqueducarboneorganiqueparticulaire(POC),del’azoteorganiqueparticulaire(PON)etdelaproductionprimaire(rC),surplusieursradialessuccessivestraversantlestroissous-syste"mesdusecteurAtlantiquedel’Oce!anAustrala"lalongitude61W:lazonesaisonnie"redesglaces(SIZ),lazonedel’oce!anouverteenpermanence(POOZ)etlaborduresuddelazonepolairefrontale(PFZ).L’e!tudeae!te!mene!eauprintemps1992danslecadredel’ope!rationEuropeanSO-JGOFSa"borddunavireoce!anographiquePolarstern.AlafindumoisdenovembredefortesconcentrationsdeBSi(maximum:11.7mmolSil1)ontainsie!te!observe!esausuddelaPFZ.Aucontraire,lesautressous-syste"mesn’ontpasmontre!defortesteneursdeBSi.DanslaSIZ,enparticulier,aucunde!veloppementdediatome!esn’apue#tremisene!videncemalgre!unretraitdelabanquisesur200kmpendantlape!rioded’e!tudeetles1concentrationsdeBSin’ontjamaisde!passe!0.6mmolSil.LesteneursdeBSisontaussireste!estre"sfaiblesdanslaPOOZ(o0.5mmolSil1)etlesfaiblesvaleursdurapportmolaireBSi/POCentrelasurfaceet200mdefond(0.04–0.06a"531S)ame"nenta"penserquelephytoplanctondecettezonen’e!taitpasdomine!pardesorganismessiliceux.Parcontre,ausuddelaPFZ,lesrapportsmolairesBSi/POCquionte!te!e!value!ssontparmilespluse!leve!sjamaisenregistre!sdansl’Oce!anAustral(maximum:1.33).Cetteobservationpeute#treinterpre!te!ecommerefle!tantlapre!sencedediatome!esfortementsilicifie!esoubiencommere!sultantd’unrecyclageplusrapideduPOCparrapporta"laBSi.DefortesconcentrationsenBSi(>1.5mmolSil1)ontaussie!te!misesene!videnceenprofondeur,largementau-dessousdelazoneeuphotique,jusqu’a"200mdefondentre491Set511S,cequisugge"reunphe!nome"nedese!dimentationmassivedesparticulessiliceusesdecettezone.LesfortesvaleursderSiobserve!esausuddelaPFZ(29.6–60.7mmolSim2J1aumaximumdeproduction)indiquentquecesous-syste"meestparticulie"rementimportantpourlebilandusiliciumdansl’Oce!anAustral.Lesrapportsinte!gre!ssurlaverticalerSi/rC(0.25a"0.46)etBSi/POC(0.53a"0.85)delaPFZimpliquentquelesdiatome!essonticiparticulie"rementsilicifie!es.Enfin,lesvaleurstre"se!leve!esdeproductiondesilicebioge!niquequenousavonsobserve!confirmentl’hypothe"sere!centedelaformationdesde!po#tssiliceuxquientourentlecontinentAntarctique,formationlie!ea"desvaleursparticulie"remente!leve!esdeproductiondansleseauxdesurfaceetnonpasa"unemeilleurpre!servationdel’opaleabyssaledanscettere!gion.1.IntroductionTheSouthernOceanisthemajorareaofseaflooropaldepositsintheWorldOcean.However,themechanismsleadingtotheforma-tionofthosesedimentsarestillamatterofdebate.Nelsonetal.(1995)arguedthatespeciallyhighbiogenicsilicaproductionrates(rSi)insurfacewatersandanunusuallyhighburialefficiencyforbiogenicsilica(BSi)arethetwolikelyexplana-tions.Nelsonetal.(1995)favoredthesecondhypothesis,withthecaveatthatdirectmeasure-mentsofBSidissolutionrateswerescarceintheliterature.Recently,Pondavenetal.(2000)havequestionedthehighefficiencyofBSipreservationintheIndiansectoroftheSouthernOcean;usingBSiproductiondata,siliconandnitrogenseasonaldepletion,sediment-trapfluxmeasurements,and230Th-normalizedburialrateinsedimentstheyhaveconcludedthattheoverallburialefficiencyofBSiisinfactsimilartotheglobalmeanof2–5%(Calvert,1983).Nelsonetal.(2002)alsohaveconcludedthattheopalpreservationefficiencyinthePacificsectorisindistinguishablefromtheglobalaverageof3%.TheconclusionsofPonda-venetal.(2000)andNelsonetal.(2002)areofparticularimportancebecausetheyofferthepossibilityofusingsedimentaryopalaccumulationratestoreconstructpastpalaeoceanographicBSiproductionratesinthesurfacewaters.IronavailabilityalsohasbeenshowntocontroltheSi:Cratioofdiatoms(Hutchins&Bruland,1998;Takeda,1998).Recently,Que!guineretal.(inpreparation)andFrancketal.(2000)haveaddedfurthercomplexitytothequestionofthecontrolofparticulateSi:CratiosbyshowingthatironavailabilitycaninducemodificationsinthesilicicaciduptakeparametersinsomeareasoftheSouthernOcean.OnlyafewstudieshavedirectlyexaminedtheproductionofBSiinthedifferentsubsystemsoftheSouthernOcean,andmostofthesedidnotresolveseasonalpatternsorvariability(e.g.,NelsonandGordon,1982;Que!guineretal.,1991;Leynaertetal.,1993).OnemajorexceptionistheworkthathasbeenconductedintheRoss
B.Que!guiner,M.A.Brzezinski/Deep-SeaResearchII49(2002)1765–17861767Sea(NelsonandSmith,1986;Nelsonetal.,1991),wheresuccessivecruiseshaveledtoareasonableunderstandingoftheseasonalevolutionofsilic-eousbiomasswithinthisareaofthecoastalandcontinentalshelfzone(CCSZ)(Nelsonetal.,1996).Also,therecentAESOPScruisesinthePacificsectoroftheSouthernOceanprovidenewinsightsintotheseasonalpatternofbiogenicsilicaproductionwithinthedifferentsub-systemsoftheAntarcticcircumpolarcurrent(ACC)(Brzezinskietal.,2001).In1992,wehadtheopportunitytodocumentthespringtemporalvariationinbiogenicsilicaproductioninthreedifferentsub-systemsoftheAtlanticsectoroftheSouthernOcean:theseasonalicezone(SIZ),thepermanentlyopenOceanzone(POOZ),andthesouthernedgeofthepolarfrontalzone(PFZ),referredtoelsewhereasthepolarfrontregion(PFr)(Que!guineretal.,1997).Thestudywasconductedduringthecourseofaustralspring,andpreliminarydataconcernedwiththeBSidistributionattheendofspringhavealreadybeenpublished(Que!guineretal.,1997).Herewepresentthecompletetemporalevolutionofsiliceousphytoplanktonproductionduringspring,includingdirectmeasurementsofsilicicaciduptakebythenaturalphytoplanktoncom-munities.Inthispaperweaddressthefollowingquestions:(1)HowdoestheBSicontentofsurfacewatersvaryduringspring?(2)Howdothedifferentsub-systemscompareintermsofbiogenicsilicaproduction?(3)Isitpossibletoderiveanestimateofthecontributionofthedifferentsub-systemstothebiogeochemicalbudgetofsiliconintheSouth-ernOcean?2.MaterialsandmethodsThedistributionsofdissolvedorthosilicicacid,particulateBSi,particulateorganiccarbon(POC),particulateorganicnitrogen(PON),andrSiweremeasuredbetweenOctoberandNovember1992,duringtheAntarktisX/6-S.O.JGOFScruiseonboardR.V.PolarsternintheAtlanticsectoroftheSouthernOcean(fordetailsofthecruise,seeSmetaceketal.,1997).Carbonprimaryproduc-tionalsowasmeasuredduringthecruise,andresultshavebeenpresentedelsewhere(Jochemetal.,1995;Que!guineretal.,1997).TheAntarktisX/6-S.O.JGOFScruisewasprincipallydevotedtothestudyofalatitudinalsectiononthe61W,betweenthepack-iceandthesouthernborderofthePolarFront;i.e.between591300Sand471S(Fig.1),duringtheperiodofsea-iceretreat.Resultspresentedherecomefromtransects2and3(11stations,between48and571S,from12to22October1992),transect5(18stationsbetween47and561Sfrom24to31October1992),andtransect11(16stationsbetween10and21November1992).Thissurveyencompassedthethreesub-systemsmentionedabove:theSIZsouthof541300S,thePOOZbetween541300Sand501300S,andthePFZfrom501300Stothenorth-ernmostboundary(Que!guineretal.,1997).Dur-ingthecruiseseaiceretreatedfrom551Stoabout.S185WatersamplesweretakenatsixdepthsderivedfromPARmeasurements(100%,25%,10%,3%,1%,and0.1%ofsurfacePAR)foreverypara-meter;PARprofiles(400–700nm)wereobtainedFig.1.LocationofthestudyareaduringAntarktisX/6-S.O.JGOFScruise(29September–29November1992).Themajorlimitsofthesub-systemsareindicated(PFZ:PolarFrontalZone;POOZ:PermanentlyOpenOceanZone;SIZ:SeasonalIceZone).
8671B.Que!guiner,M.A.Brzezinski/Deep-SeaResearchII49(2002)1765–1786usingaLI-CORquantummeter(LI-193SAsphericalquantumsensorconnectedtoaLI-100DataLogger).Threeadditionaldeeperlevelsweresampledforparticulatematterandorthosilicicacidconcentrations,at100,150,and200m.Orthosilicicacidconcentrationsweremeasuredonboardship.SampleswereanalyzedonanAutoanalyzerTechniconIIusingthemethodofMullinandRiley(1965);precision:70.05mM.Forchlorophyllaanalysis,0.5-lseawatersampleswerefilteredontoWhatmanGF/Ffilters(nominalcut-offsize:0.7mm),transferredintodryPyrextubesandimmediatelyfrozenonboard(201C).SampleswerelateranalyzedbythefluorimetricmethodofYentschandMenzel(1963),usingacalibratedTurner112fluorometer;precision:71%.Forparticulatesilicaanalysis,1-lseawatersampleswerefilteredonto0.4-mmNucleporepolycarbonatefilters.Filterswerethenovendried(601C)onboard,storedinplasticPetridishes,andreturnedtothelaboratoryforfurtheranalysis.BSiwasmeasuredbythehotNaOHdigestionmethodofPaasche(1973)modifiedb1yNelsonetal.(1989);blanks:0.00670.005mmoll,precision:710%intherange0–20mmoll1.ForPOCandPONanalysis,2.5-lseawatersampleswerefilteredontoWhatmanGF/Ffilterspre-combustedat4501C.Filterswerestoredfrozen(201C)inglassboxes.AftereliminationofinorganiccarbonbyfumingwithconcentratedHCl,POCandPONconcentrationsweremea-suredbyacombustionmethod(StricklandandParsons,1972)usingaCarloErbamodelN1500analyzer;blanks:0.170.01mmolPOCl1and0.0270.002mmolPONl1,precision:710%intherange0–14mmolPOCl1and0–2mmolPONl1.ForrSimeasurements,samplesweredrawnin1-lcleanpolycarbonatebottlescoveredwithneutraldensityscreenstosimulatethelightintensityofthesamplingdepths(seeabove).Sampleswerespikedwith11.5mlof1.7mMNa320SiO3solutionor13mlof1.6mMNa320SiO3solution,resultinginanincreaseofthefinalambientorthosilicicacidconcentrationofabout20mMSi(OH)4.DuetothelowSi(OH)4concen-trationsmeasuredatthenorthernstations(o4mMSi(OH)4),thetraceradditioncouldhavesignifi-cantlyincreasedthenaturaluptakerates,andthispointwillbediscussedlater.Sampleswerethenplacedinadeckincubatorcooledbyrunningseasurfacewater.After24hincubation,sampleswerefilteredthrough0.4-mmNucleporepolycarbonatefiltersandstoredliketheparticulatesilicasamples.SampleswereanalyzedusingeithertheMAAS6–60massspectrometeroftheMarineScienceInstitute(UniversityofCaliforniaSantaBarbara)usingthemethodofNelsonandGoering(1977),orthemassspectrometeroftheInstitutUniversi-taireEurope!endelaMer(Universite!deBretagneOccidentale,Brest,France)usingthemethoddescribedbyCaubert(1998).Particulatesilicasamplesfromthesurfaceandthe0.1%lightdepthwerealsosize-fractionatedbyfilteringsamplesthrough10mmfollowedby0.4mmNucleporepolycarbonatefilters.3.Results3.1.SilicicacidThedistributionofSi(OH)4showsageneralsouth–northdecreaseinconcentration(Fig.2).ThisgeneraldecreaseislikelyrelatedtoEkmannortherntransportofAntarcticsurfacewater(AASW)originatingfromcontinuousmixingofuppercircumpolardeepwater(UCDW)withsurroundingwatermassesoftheACC(Vethetal.,1997),althoughthereisevidencethatthepositionofthesilicicacidgradientisinfluencedsignificantlybyinsitubiologicalconsumptionofsilicicacid(DafnerandMordasova,1994;Brze-zinskietal.,2001).IndicationsofaseasonaldecreaseinsilicicacidconcentrationsrelatedtobiologicalactivitycanbeseeninthePFZ,andalsointhePOOZfrom521Sto541S,betweentransect5andtransect11(Fig.2bandc),aperiodcoincidingwithanincreaseinproductionandbiomassasdiscussedlater.Atthesouthernedgeofthestudyarea,thesteepsilicicgradientobservedinsurfacewaterscorrespondedtotheACC-WeddellGyreboundaryfrontwhichVethetal.(1997)positionedat571S–581300Sduringourcruise.Thatfrontalareaischaracterizedbytheoccurrenceofeddies
B.Que!guiner,M.A.Brzezinski/Deep-SeaResearchII49(2002)1765–17861967Fig.2.Temporalevolutionoforthosilicicaciddistribution(mM):(a)transect2+3(12–22October),(b)transect5(24–31October),(c)transect11(10–21November).Thesea-iceextentissymbolizedbythequadrangleontoprightoftheframe.andmeanders.TheobservationsofVethetal.PolarFront,whichismanifestedasabi-modal(1997)duringtheAntarktisX/6cruisealsominimumintheSi(OH)4distributioninthesurfacerevealedthepresenceofanactivemeanderinthewaters(Fig.2).
0771B.Que!guiner,M.A.Brzezinski/Deep-SeaResearchII49(2002)1765–17863.2.ChlorophyllaThetemporalevolutionofchlorophyllawascharacterizedbystronglydifferentpatternsinthesouthernandthenorthernpartsofthestudyregion(Fig.3).InthePFZ,thephytoplanktonbiomasswasalreadyelevatedatthebeginningofthestudyperiod,withvaluesquitehomogeneouslydistributedovertheupper0–80m(0.4–0.5to>0.6mgl1).Chlorophyllaconcentrationsin-creasedinthePFZduringthecruise,andadeepchlorophyllmaximum(DCM)becameestablishedbytheendofthestudyperiod(maximum>1.4mgl1at30–60mdepthdependingonthelocation).AlthoughwewerenotabletosamplethePOOZadequatelyduringtransect2+3duetoastormevent,thechlorophylladistributionob-servedduringtransect5suggestedamoderatephytoplanktondevelopmentwithhighestvaluesof>0.3mgl1.Afterwards,chlorophyllalevelsdeclinedandvalueso0.2mgl1characterizedthecentralPOOZduringtransect11(Fig.3c);althoughhighervalueswereobservedatthenorthernmostPOOZstationnearthePolarFront.TheSIZalsocontainedlowphytoplanktonbio-massduringtransect11(Fig.3c),withchlorophyllaconcentrationscloseto0.2mgl1presentinthiszonedownto100m.Averysmallincreaseofchlorophyllaconcentrations(o0.25mgl1)wasnoticedinthevicinityoftherecedingiceedgeattheendofthecruise.3.3.ParticulateorganicmatterThedistributionofPOC(Fig.4)andPON(Fig.5)stronglyparalleledthatofchlorophylla,withthemainseasonalfeaturebeingthedevelop-mentofthebloominthePFZ.ThemaindifferencewasobservedattheendofthestudyperiodwhenhighconcentrationsofbothPOC(>8mmolCl1)andPON(>1mmolNl1)wereobservedbelowtheeuphoticzoneatdepthsexceeding100mat501S,suggestingbloomsedimentationatthattime.TherewasamoderateincreaseofPOCandPONwithintheSIZ,especiallyattheiceedge,butpermanentdeepwind-inducedmixingresultedinadeepentrainmentandquitehomogenousverticaldistributionofparticulateorganicmatterastheiceedgemovedawaysouthward.3.4.BiogenicsilicaBSiconcentrationswerehighinthePFZatthebeginningofthestudyperiod,withvalueswellabove1.0mmolSil1intheupper100m(Fig.6a).AsmentionedaboveforPOCandPON,thehighconcentrationlayerofBSiextendedtoconsider-abledepthnear501Sattheendofthelasttransect(Fig.6c),butcontrarytoPOCandPON,thispatternwasalreadyestablishedforBSiatthebeginningofthefirsttransect,suggestingearlysedimentationofSi-richmaterialanddecouplingofBSiversusPOCandPONcyclinginthesurfacelayer.InthecourseofaustralSpringBSivaluesincreasedattainingmaximalvaluesinthePFZ(at49–501S)bytheendofthestudyperiodwhereBSiconcentrations>11mmolSil1wereobservedbetween40and60mdepth(maximumvalue:11.7mmolSil1at491S).Highvaluesextendeddownto200mwithconcentrationswellabove1mmolSil1.Incontrast,BSiconcentrationswererelativelylowinthePOOZandtheSIZduringallthreetransects.Initialvaluesweremoderateatthebeginningofthefirsttransectandquitehomo-geneouslydistributedoverthesurfacelayer(0.2–0.3mmolSil1intheopenwatersofthePOOZaswellasintheice-coveredwatersoftheSIZ).Asseaiceretreatedfrom551Sto591S,theBSiincreasewasmoderateintheSIZ,andmaximumvalueswereobservedat571SinanareaofincreasedverticalstabilitycorrespondingtotheACC-WeddellGyreBoundaryFront(seeVethetal.,1997).However,themaximumBSivalue(0.66mmolSil1)wasfarlowerthanthemaximumvaluereachedinthePFZ.InthePOOZ,aslightincreaseinBSioccurredbetweenthefirstandthesecondtransect,withconcentrationsreaching>0.4mmolSil1.ThedominantchangewithinthePOOZwastheseasonalevolutionofanorth–southgradientofBSistartingat521SassociatedwiththedevelopmentofthebloominthePFZ.Thesize-fractionationofBSi(Fig.7)clearlyshowsthemajorroleoflarge(>10mm)oversmall(o10mm)siliceousphytoplanktoninthebloom
B.Que!guiner,M.A.Brzezinski/Deep-SeaResearchII49(2002)1765–1786withinthePFZ.TherelativecontributionoflargeandsmallfractionstoBSididnotshowanyclearseasonaltrend,andthemajorvariationsweremorerelatedtospatialheterogeneitybetweenthethreesub-systems.The>10mmfractionac-countedfor,respectively,64.7%711.4%,75.7%75.5%,89.9%73.9%ofthesurfaceBSiand55.5%715.3%,73.3%79.1%,82.2%711.5%ofthedeep(0.1%lightlevel)BSi,intheSIZ,thePOOZandthePFZ.TheincreasedcontributionofsmallphytoplanktontowardstheSIZparalleledashiftfromphyto-planktonassemblagesdominatedbyCorethroncriophilum/inermeandFragilariopsiskerguelensisinthePFZtosmallpennatecommunities(Pseudo-nitzschiaspp.)attheiceedge(seeBathmanetal.,1997).3.5.ElementalratiosoftheparticulatematterTheelementalcompositionoftheparticulatematteralsoreflectedthedevelopmentoflargediatomsinthePFZ.Si:Cratiosincreasedfromquitehighvalues(0.09–0.37)atthebeginningofthestudytoextremelyhighvaluesbythelasttransect(Fig.8),especiallywithinthesubsurfaceBSimaximumwherethemaximumSi:Cratioof1.33wasobserved.Incontrast,Si:CratiosinthePOOZandtheSIZweresimilartotypicalvaluesfornutrient-repletediatoms(Brzezinski,1985),andvaluesdidnotshowmuchchangefromtransect2+3(Fig.8a),whenvaluesrangedfrom0.05to0.18,totransect11(Fig.8c)whenvaluesbetween0.03and0.22wereobserved.C:Nratios(datanotshown)followedtheclassicalverticalincrease(seeHonjoandManganini,1993),andtherewasnoclearseasonalpattern.TheC:Nratiorangedfrom6.1–22.0to6.1–15.1inthePOOZandSIZ,andfrom6.6–15.4to6.1–16.0inthePFZduringthestudyperiod.3.6.BiogenicsilicaproductionratesrSiincreasedinthePFZduringthestudy,whereasconsistentlylowratescharacterizedtheothersubsystems(Fig.9).Duetothestormeventduringthetwofirsttransects,wearenotabletodocumentpreciselythedistributionofrSiatthe1771beginningofthecruise,buttherearesomeindicationsofaslightlyhigheractivityinthePFZreachingupto0.29mmolSil1d1insub-surfacewaters(30m)at491Swhereasvaluesp0.05mmolSil1d1wererecordedinice-coveredwatersoftheSIZ.rSiremainedquitelowinthePOOZandtheSIZduringalltransects,barelyexceeding0.05mmolSil1d1,withtheexceptionofthesurfacewatersattheiceedgeduringtransect11whererSivaluesslightlyexceeded0.10mmolSil1d1,indicativeofmoderatesiliceousphyto-planktongrowth(Fig.9c).Themainfeatureofthechangeinsilicaproductionwithtimewastheespeciallyhighvaluesreached1int1hePFZ,whererSiratesupto0.80mmolSildwereobservedontransect5(Fig.9b)withvaluesreaching1.08mmolSil1d1ontransect11at491S(Fig.9c).ThesevaluesareinthelowerendoftherangeoftheveryhighvaluesmeasuredbyNelsonandSmith(1986)inabloomfollowingtherecedingiceedgeoftheRossSeaandarenearlyequivalenttothosemeasuredwithinanintensediatombloomintheSIZoverlappingPFZinthePacificsectoralong1701WbyBrzezinskietal.(2001).Itisinterestingtonotethat,contrarytothedistributionofBSistocks,whichexhibitedsub-surfacemaxima,silicaproductionrateswereelevatedatthesurfaceandwerequitehomoge-neouslydistributedinthe0–50mlayer.Thisfurthersupportstheideaofsignificantexportofsiliceousbiomasswhilethebloomwasstillgrowing.Asmentionedintheprevioussection,theisotopeadditionresultedinalargeincreaseoforthosilicicacid(+20mM)relativetotheambientconcentrationinthePFZ,sothattherSivalueswemeasuredneedtobeconsideredaspotentialmaximumrates.However,webelievethattherateswemeasurearequiteclosetothetruevaluesfortworeasons.Firstly,onlyafewlocationslocatedatthenorthernboundaryofthestudyareaexhibitedloworthosilicicacidconcentrations(i.e.o5mM),andthesestationswerenottheoneswherethemaximumratewererecorded.HighKmvaluesfororthosilicicacid(>10mM)havebeenreportedintheliteratureforSouthernOceanopen-waterdiatoms(Jacques,1983;Sommer,1986,1991;Caubert,1998;Nelsonetal.,2001)butsomestudiessuggestKmvalueso5mM
2771B.Que!guiner,M.A.Brzezinski/Deep-SeaResearchII49(2002)1765–1786Fig.3.Temporalevolutionofchlorophylladistribution(mgl1):(a)transect2+3(12–22October),(b)transect5(24–31October),(c)transect11(10–21November).Thesea-iceextentissymbolizedbythequadrangleontoprightoftheframe.
B.Que!guiner,M.A.Brzezinski/Deep-SeaResearchII49(2002)1765–17863771Fig.4.Temporalevolutionofparticulateorganiccarbondistribution(mmolCl1):(a)transect2+3(12–22October),(b)transect5(24–31October),(c)transect11(10–21November).Thesea-iceextentissymbolizedbythequadrangleontoprightoftheframe.
4771B.Que!guiner,M.A.Brzezinski/Deep-SeaResearchII49(2002)1765–17861Fig.5.Temporalevolutionofparticulateorganicnitrogendistribution(mmolNl):(a)transect2+3(1222October),(b)transect5(24–31October),(c)transect11(10–21November).Thesea-iceextentissymbolizedbythequadrangleontoprightoftheframe.
B.Que!guiner,M.A.Brzezinski/Deep-SeaResearchII49(2002)1765–17867715Fig.6.Temporalevolutionofbiogenicsilicadistribution(mmolSil1):(a)transect2+3(12–22October),(b)transect5(24–31October),(c)transect11(10–21November).Thesea-iceextentissymbolizedbythequadrangleontoprightoftheframe.
Voir icon more
Alternate Text