Debugging Systems for Constraint Programming

icon

13

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

13

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur, Master, Bac+5

  • dissertation


Debugging Systems for Constraint Programming ESPRIT 22532 Task T.WP3.4: Declarative Debugging in Constraint Programming Delivrable D.WP3.4.M2.1-3 Simplifiaction of Finite Domain Constraints Abdelkhalek Goumairi and Alexandre Tessier LIFO, rue Leonard de Vinci, BP 6759, 45067 Orleans Cedex 2, France ,

  • constraints over

  • redundant constraints

  • constraints into another

  • nite domain

  • free variable

  • mains can

  • constraint programming

  • constraint simplication


Voir icon arrow

Publié par

Nombre de lectures

38

Langue

English

Debugging
Systems
for
Constrain
Cedex
T
de
t
ttp://www.univ-orleans.fr/SCIENCES/LIF
Programming
rue
ESPRIT
45067
22532
goumairi@lifo.univ-orleans.fr,
T
http://discipl.inria.fr
ask
LIF
T.WP3.4

:
BP
Declarativ

e
F
Debugging
essier@inria.fr
in
b
Constrain
Alexandre
t
essier
Programming
O,
Delivr
L
able
eonard
D.WP3.4.M2.1-3
Vinci,
Simplifia
6759,
ction
Orl
of
eans
Finite
2,
Domain
rance
Constraints
Alexandre.T
Ab
h
delkhalek
O/Mem
Goumairi
ers/tessier/
and
/This
pap
er
is
~
w
hose
an
can
exten
esentation
ted
diagnostis
abstract
h
of
strai-
the
realisation
DEA
w
dissertation
of
(in
can
F
a
renc
understand,
h)
b
in
displa
app
indeed
endix.
of
Abstract
in
An
ols,
imp
t
ortan
pro
t
declarativ
issue
the
in
C
Constrain
are
t
is
Logic
y
Programming
redundan
(CLP)
of
sys-
for
tems
set
is
problem
ho
y
w
for
to
goal:
output
F
constrain
ject,
ts
h
in
Here,
a
to
usable
ts,
form.
in
T
declar-
ypically
e
,
session,
only
to
a
of
small
a
subset
of
~

x
ariables
of
in
the
making
v
form
ariables
or
in
v
constrain
and
ts
(more
is
b
of
equiv
in
of
terest,
of
and
constrain
so
stated.
an
not
informal
app
statemen
in
t
CLP
of
displa
the
to
problem
the
at
oblem
hand
that
is:
DiSCiPl
giv
eral
en
suggested:
a
graphics
conjunction
xima-
C
e
(
transformmation
~
equiv
x
of
;
legible.
~
LOCO
y
DiSCiPl
)
is
of
e
constrain
T.WP2.1,
ts,
Duning
express
error
9
to
~
e
y
questions
C
for
(
form:
~
C
x
where
;
a
~
ts;
y
a
)
~
in
free
the
C
simplest
not
form.
The
[13
simplify
]
easier
sho
read),
w
9
ed
.
ho
w
w
existen
a
ables,
set
constrain
of
e
constrain
transforma-
ts
,
o
form
v
another
er
ard
the
t,
real
tec
domain
demonstration).
can
y
b
a
e
of
simplied.
ts
W
as
e
This
presen
is
t
new,
here
it
ho
ears
w
et
w
the
e
of
can
systems
simplify
the
a
y
set
solutions
of
a
constrain
It's
ts
pr
o
pr
v
.
er
or
nite
matter,
domains.
the
First,
pro
w
sev
e
solutions
start
ere
b
Suc
y
as
a
to
bref
appro
sigh
tions,...etc.
t
w
on
c
the
the
simplication
in
of
an
the
alen
constrain
set
ts
constrain
o
more
v
One
er
the
real
task
domain,
the
then
ESPRIT
w
ject
e
the
sho
ativ
w
erros
ho
(task
w
declarativ
w
debugging).
e
a
can
e
extend
diagnostis
those
the
tec
ol
hniques
b
of
led
simplication
ask
o
to
v
user,
er
example:
real
the
domain
9
to
y
the
!
nite
?
domain.

This
is
w
conjonction
ork
constrain
tak

es
is
part
atom;
in
and
the
y
pro
the
ject:
v
ESPRIT
of
DiSCiPl
wic
(Debugging
are
Systems
free
for
a.
Con
aim
train
to
ts
(meaning
Programming).
it
The
to
w
to
ork
the
is
ula
done
~
in
C
the
F
LOCO
that,
pro
e
ject
eliminate
(common
tial
to
ari-
INRIA
eliminate
and
t
Univ
ts
ersit
mak
y
sym
of
olic
Orl
tions

precisely
eans).
substitution
In
the
sev
ula
eral
y
parts
one
of
hforw
the
and
pro
alen
ject,
using
the
example
problem
hniques
of
automatic
the
31
In
tro
duction
(as
treated
9
The
(as
unit
the
came
)
out
(as
from
I)
the
y
CLP(R)
w
w
al
as
three
describ
(I
ed
of
with
elimination
details
e
in
to
[13
(I)
].
nite
The
Example.
w
can
ording
ula
of
.
the
of
problem
),
of
redundan
the
I
constrain
equiv
t
)).
simpli

Voir icon more
Alternate Text