Combinatorial state sum invariant from categories

icon

95

pages

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

95

pages

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur
Combinatorial state sum invariant from categories Aristide Baratin LPT Orsay - CPHT Ecole Polytechnique - IPhT Saclay Paris-Nord, April 2011 0910.1542[hep-th] 0812.4969[math.QA] hep-th/0611042

  • sum models

  • crane-yetter rep

  • turaev-viro rep

  • lpt orsay - cpht

  • barrett-crane

  • introduction state

  • category introduction

  • combinatorial state


Voir icon arrow

Publié par

Nombre de lectures

36

Combinatorial state sum invariant from categories
Aristide Baratin
LPT Orsay - CPHT Ecole Polytechnique - IPhT Saclay
Paris-Nord, April 2011
0910.1542[hep-th]
0812.4969[math.QA]
hep-th/0611042I 3D: Ponzano-Regge Rep(SU(2)) , Turaev-Viro Rep(U (su(2))q
I 4D: Dijkgraaf-Witten ( nite groups), Ooguri Rep(SU(2)), Crane-Yetter Rep( U (su(2))q
I Models of 4d quantum gravity: Barrett-Crane, EPRL-FK
Simplicial set S of algebraic data, or states labeling each simplex.
@ : S( )!S( )i n n 1
Weights w: S( )!C give an amplitude to a staten
P Q
Partition function: Z = w(s())s2S
Introduction
State sum models
State sum model is a discrete functional integral on a triangulated manifold:
A. Baratin | State sum invariant from a 2-category Introduction 2/37I 3D: Ponzano-Regge Rep(SU(2)) , Turaev-Viro Rep(U (su(2))q
I 4D: Dijkgraaf-Witten ( nite groups), Ooguri Rep(SU(2)), Crane-Yetter Rep( U (su(2))q
I Models of 4d quantum gravity: Barrett-Crane, EPRL-FK
Weights w: S( )!C give an amplitude to a staten
P Q
Partition function: Z = w(s())s2S
Introduction
State sum models
State sum model is a discrete functional integral on a triangulated manifold:
Simplicial set S of algebraic data, or states labeling each simplex.
@ : S( )!S( )i n n 1
A. Baratin | State sum invariant from a 2-category Introduction 2/37I 3D: Ponzano-Regge Rep(SU(2)) , Turaev-Viro Rep(U (su(2))q
I 4D: Dijkgraaf-Witten ( nite groups), Ooguri Rep(SU(2)), Crane-Yetter Rep( U (su(2))q
I Models of 4d quantum gravity: Barrett-Crane, EPRL-FK
P Q
Partition function: Z = w(s())s2S
Introduction
State sum models
State sum model is a discrete functional integral on a triangulated manifold:
Simplicial set S of algebraic data, or states labeling each simplex.
@ : S( )!S( )i n n 1
Weights w: S( )!C give an amplitude to a staten
A. Baratin | State sum invariant from a 2-category Introduction 2/37I 3D: Ponzano-Regge Rep(SU(2)) , Turaev-Viro Rep(U (su(2))q
I 4D: Dijkgraaf-Witten ( nite groups), Ooguri Rep(SU(2)), Crane-Yetter Rep( U (su(2))q
I Models of 4d quantum gravity: Barrett-Crane, EPRL-FK
Introduction
State sum models
State sum model is a discrete functional integral on a triangulated manifold:
Simplicial set S of algebraic data, or states labeling each simplex.
@ : S( )!S( )i n n 1
Weights w: S( )!C give an amplitude to a staten
P Q
Partition function: Z = w(s())s2S
A. Baratin | State sum invariant from a 2-category Introduction 2/37Introduction
State sum models
State sum model is a discrete functional integral on a triangulated manifold:
Simplicial set S of algebraic data, or states labeling each simplex.
@ : S( )!S( )i n n 1
Weights w: S( )!C give an amplitude to a staten
P Q
Partition function: Z = w(s())s2S
I 3D: Ponzano-Regge Rep(SU(2)) , Turaev-Viro Rep(U (su(2))q
I 4D: Dijkgraaf-Witten ( nite groups), Ooguri Rep(SU(2)), Crane-Yetter Rep( U (su(2))q
I Models of 4d quantum gravity: Barrett-Crane, EPRL-FK
A. Baratin | State sum invariant from a 2-category Introduction 2/37I ‘Metric’ models: explicit data on the edges of the triangulation ?
Why state sum invariants?
Combinatorial construction of manifold invariants, TQFT’s
Models of quantum geometry:
I Triangulation independent models of quantum geometry ?
Issue tied to di eomorphism symmetry
Introduction
State sum invariants
Constructing manifold invariants:
Philosophy: use combinatorics of the local ’Pachner moves’ of the triangulation to
convert a topological problem into an algebraic one.
A. Baratin | State sum invariant from a 2-category Introduction 3/37 Combinatorial construction of manifold invariants, TQFT’s
Models of quantum geometry:
I Triangulation independent models of quantum geometry ?
Issue tied to di eomorphism symmetry
I ‘Metric’ models: explicit data on the edges of the triangulation ?
Introduction
State sum invariants
Constructing manifold invariants:
Philosophy: use combinatorics of the local ’Pachner moves’ of the triangulation to
convert a topological problem into an algebraic one.
Why state sum invariants?
A. Baratin | State sum invariant from a 2-category Introduction 3/37 Models of quantum geometry:
I Triangulation independent models of quantum geometry ?
Issue tied to di eomorphism symmetry
I ‘Metric’ models: explicit data on the edges of the triangulation ?
Introduction
State sum invariants
Constructing manifold invariants:
Philosophy: use combinatorics of the local ’Pachner moves’ of the triangulation to
convert a topological problem into an algebraic one.
Why state sum invariants?
Combinatorial construction of manifold invariants, TQFT’s
A. Baratin | State sum invariant from a 2-category Introduction 3/37Introduction
State sum invariants
Constructing manifold invariants:
Philosophy: use combinatorics of the local ’Pachner moves’ of the triangulation to
convert a topological problem into an algebraic one.
Why state sum invariants?
Combinatorial construction of manifold invariants, TQFT’s
Models of quantum geometry:
I Triangulation independent models of quantum geometry ?
Issue tied to di eomorphism symmetry
I ‘Metric’ models: explicit data on the edges of the triangulation ?
A. Baratin | State sum invariant from a 2-category Introduction 3/37

Voir icon more
Alternate Text