33
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
33
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
BacktestingValue-at-Risk:FromDynamicQuantileto
DynamicBinaryTests
Elena-IvonaDumitrescu,
∗
ChristopheHurlin,
†
andVinsonPham
‡
February2012
Abstract
InthispaperweproposeanewtoolforbacktestingthatexaminesthequalityofValue-at-
Risk(VaR)forecasts.Todate,themostdistinguishedregression-basedbacktest,proposed
byEngleandManganelli(2004),reliesonalinearmodel.However,inviewofthedi-
chotomiccharacteroftheseriesofviolations,anon-linearmodelseemsmoreappropriate.
Inthispaperwethusproposeanewtoolforbacktesting(denoted
DB
)basedonady-
namicbinaryregressionmodel.Ourdiscrete-choicemodel,
e.g.
Probit,Logit,linksthe
sequenceofviolationstoasetofexplanatoryvariablesincludingthelaggedVaRandthe
laggedviolationsinparticular.Itallowsustoseparatelytesttheunconditionalcoverage,
theindependenceandtheconditionalcoveragehypothesesanditiseasytoimplement.
Monte-Carloexperimentsshowthatthe
DB
testexhibitsgoodsmallsampleproperties
inrealisticsamplesettings(5%coverageratewithestimationrisk).Anapplicationona
portfoliocomposedofthreeassetsincludedintheCAC40marketindexisfinallyproposed.
•
Keywords
:Value-at-Risk;RiskManagement;DynamicBinaryChoiceModels
•
J.E.LClassification
:C22,C25,C52,G28
∗
Correspondingauthor:MaastrichtUniversityandUniversityofOrle´ans(LEO,UMRCNRS7322),Ruede
Blois,BP6739,45067Orle´ansCedex2,France.Email:elena.dumitrescu@univ-orleans.fr
†
UniversityofOrle´ans,(LEO,UMRCNRS7322).Email:christophe.hurlin@univ-orleans.fr.
‡
UniversityofCaliforniaatSantaCruz(UCSA).VinsonPhambenefitedfromagrantfromtheEuropean
Program
Atlantis
AIME”ExcellenceinMobility”forhisvisitattheUniversityofOrle´ans.
1Introduction
Thereisanintenseacademicdebateonthevalidityofriskmeasuresingeneralandonthe
validityoftheValue-at-Risk(hereafterVaR)inparticular.Indeed,thisisaparticularproblem,
sincetheVaRisnotobservable,andthereforewehavetorelyupontheanalysisofthebehaviour
oftheviolationssoastotestitsvalidity.Aviolationisactuallydefinedasasituationwhere
thelossobservedex-postgoesbeyondtheex-antevalueoftheVaRinabsolutevalue.Amodel
ishencevalidiftheviolationprocesssatisfiesthemartingaledifferencehypothesis.
TherearethreemainissuesgenerallyemphasizedwhenonecomestoevaluatingVaRse-
quences.First,thepowerofthebacktestingtest,
theprobabilityofrejectingamodelthatisnot
valid
,especiallyinsmallsamples(250to500observations,or,toputitdifferently,1-2yearsof
VaRforecasts)playsakeyrole.Ithasbeenshownthatgenerallythesetestshavelowpower,as
thebacktestingprocedureistoooptimisticinthesensethatitdoesnotrejectthevalidityofa
modelasoftenasitshould(seeHurlinandTokpavi,2008).
Second,thebacktestingmethodologyhastobemodel-free.Indeed,theevaluationprocedure
mustbeimplementablewhateverthemodelusedtogeneratethesequenceofVaR,soasto
reachadiagnosticregardingthevalidityoftheVaR.Third,estimationriskmustbetakeninto
account.VaRseriescanbeestimatedusingvariousmodels,somemore,otherslesscomplicated,
withafewornumerousparameters,accordingtothespecificmethodologyofacertainfinancial
institution.TestingprocedurescanthussuccessfullyanswerthequestionofVaRvalidityonly
bytakingintoaccountestimationerror,astheriskofestimationerrorpresentintheestimates
oftheparameterspollutesVaRforecasts.Conditionalonallowingfortheseerrors,weshould
observenoparticularorientationofthediagnosticofthebacktestinthesenseofunder-rejecting
orover-rejectingtoooften.
Variousbacktestshavebeenproposedsoastosatisfythesethreerequirements(highpower,
model-free,introduceestimationrisk).Theycanbeclassifiedintofourcategories.First,in
thepioneerworksofChristoffersen(1998)thevalidityofVaRforecastsistestedthroughpa-
2
rameterrestrictionsonthetransitionprobabilitymatrixassociatedwithatwo-statesMarkov
chainmodel(violation/noviolation).Tobemoreprecise,twoassumptionsarederivedfrom
themartingaledifferencehypothesis,namelytheunconditionalcoverageandtheindependence
hypotheses.Second,testsrelyingonthedurationbetweentwoconsecutiveviolationsareput
forwardbyChristoffersenandPelletier(2004),Haas(2005)andCandelonetal.(2008)ina
likelihood-ratioframework.Atthesametime,themartingaledifferenceassumptionistested
directlybyBerkowitzetal.(2011),HurlinandTokpavi(2007)orPerignonandSmith(2008).
Lastbutnotleast,sometestsarebasedonregressionmodels(seeEngleandManganelli,2004).
ThegeneralideaistoprojectVaRviolationsontoasetofexplanatoryvariablesandsubse-
quentlytestdifferentrestrictionsontheparametersoftheregressionmodel,thatcorrespondto
theconsequencesofthemartingaledifferenceassumption.Insuchacontext,bothlinearand
non-linearregressionmodelscanbeconsidered.Forexample,therecentpaperofGaglianoneet
al.(2011)proposestoevaluatethevalidityoftheVaRbyrelyingonquantileregression,which
allowsthemtoidentifywhyandwhenaVaRmodelismisspecified.
Nevertheless,themostpopulartestofthiscategoryisEngleandManganelli’sDynamic
Quantiletest(2004),hereafter
DQ
.
1
Itconsistsintestingsomelinearrestrictionsinalinear
modelthatlinkstheviolationstoasetofexplanatoryvariables.However,thedependentvariable
isbynatureabinaryone.Itfollowsthatlinearregressionmodelsarenotthemostappropriate
choiceallowingtoinferontheparametersandconsequentlyonthehypothesisofvalidityofthe
VaR.Thelinearmodelhasseveralshortcomingsinthiscontext.Theinnovationsofthelatent
modelareassumedtofollowadiscretedistribution.Theyarealsoheteroscedasticinaway
thatdependsontheestimatedparameters.Atthesametime,constrainingtherightpartof
theregressiontothe0-1intervalimpliesnegativevariancesandnonsenseprobabilities.Still,
itistechnicallypossibletotestthesignificanceoftheslopeparametersinthecaseofabinary
dependentvariablebyrelyingonlinearmodels(seeGourieroux,2000).
InthispaperweproposeanewtoolforbacktestingVaRforecasts.LikeEngleandMan-
ganelli,weconsideraregressionmodelthatlinkstheviolationstoasetofexplanatoryvariables.
1
Notethatthe
DQ
backtestisnotrelatedtothequantileregressionmethodusedintheCAViaRmethodto
forecasttheVaR(EngleandManganelli,2004).
3
However,giventhedichotomiccharacteroftheseriesofviolations,weuseanon-linearmodel
and,morespecifically,aDynamicBinary(hereafter
DB
)regressionmodel.Theissueaddressed
inthispaperishencetheimprovementofthefinitesamplepropertiesofthebacktests,particu-
larlythepowerofthesetests,whenusingalinkfunctionthatismoreappropriateforthebinary
dimensionoftheregressand.Besides,thesenewtestsareexpectedtoberobusttoestimation
.ksir
Byproposingdynamicbinarymodels,whichrelyonrecentextensionsadvocatedinthe
EarlyWarningSystem
literature,thepotentialcorrelationbetweentheviolations(clusters)is
takenintoaccountintheestimation.Consequently,thetestsusedtoassesstheindependence
assumptionfortheviolationsandimplicitlytheonestestingtheconditionalcoveragehypothesis
areexpectedtoexhibithigherpowerthantheonespreviouslyproposedintheliterature.To
bemoreprecise,weproposesevendifferentspecifications,denotedby
DB
1
to
DB
7
,inspired
fromtheCAViaRspecificationsputforwardbyEngleandManganelli(2004).Thesubspaceof
explanatoryvariablesincludesseverallagsoftheviolationsseriesandoftheVaR,towhichthe
laggedindexisaddedinviewofthedynamicnatureofthemodels.Totesttheaccuracyofthe
VaRsequence,atwo-stepframeworkisthusimplemented.First,theseven
DB
specifications
areestimatedbyconstraintmaximum-likelihood(KauppiandSaikonnen,2008).Subsequently,
likelihood-ratiostatisticsareusedtoassessthejointsignificanceoftheparametersandthusthe
validityoftheVaR.
Notethatthistesthasseveraladvantages.First,itcanbeeasilyimplemented.Second,it
allowsustoseparatelytesttheunconditionalcoverage,theindependenceandtheconditional
coveragehypotheses.Third,Monte-Carloexperimentsshowthatbytakingintoaccountesti-
mationrisk,ourconditionalcoveragetestexhibitsgoodfinitesamplepropertiesinverysmall
samples(250observations)fora5%coveragerate.
AmainissueinVaRliteratureregardstheconsequencesofthepotentialcorrelationamongst
assetsontheconstructionofriskmeasures.WethusproposetotestthevalidityoftheVaRob-
tainedbyestimatingbothmultivariatemodels,
i.e.
modelsthattakeintoaccountthecorrelation
amongassetsandunivariatemodels,
i.e.
modelsthatdonotcareforthepossiblecorrelation
4
amongassets.Toachievethisaim,weconsideraportfolioconstitutedfromthreeassetsincluded
intheCAC40marketindexfortheperiodJune1,2007-June1,2009.Ourbacktestshows
thatthetwoapproachesleadustoriskmeasuresthatarevalidfromtheconditionalcoverage
hypothesisviewpoint.ThesefindingsgoalongthelinesofBerkowitzandO’Brien’sdiagnostic
(2002).
Therestofthispaperisorganizedasfollows.Section2presentsthetestingframework.
Insection3thebinaryregression-basedbacktestsarepresentedwhileinsection4theirsmall-
samplepropertiesaregauged.Section5revealsthemainresultsofanempiricalapplicationon
athree-assetillustrativeportfolio.
2Environmentandtestablehypotheses
Letusdenoteby
r
t
thereturnofanassetorofaportfolioattime
t
andby
VaR
t
|
t
−
1
(
α
)the
ex-
ante
VaRforan
α
%coveragerateforecastconditionallyonaninformati