Niveau: Supérieur, Licence, Bac+2
Algebraic approximations of holomorphic maps from Stein domains to projective manifolds Jean-Pierre Demailly 1 Laszlo Lempert 2 Universite de Grenoble I Purdue University Institut Fourier, BP 74 Department of Mathematics U.R.A. 188 du C.N.R.S. West Lafayette, IN 47907, U.S.A. 38402 Saint-Martin d'Heres, France Bernard Shiffman 3 Johns Hopkins University Department of Mathematics Baltimore, MD 21218, U.S.A. Key words: affine algebraic manifold, algebraic approximation, algebraic curve, complete pluripolar set, Eisenman metric, Hormander's L2-estimates for ∂, holo- morphic map, holomorphic retraction, holomorphic vector bundle, hyperbolic space, Kobayashi pseudodistance, Kobayashi-Royden pseudometric, Nash alge- braic map, Nash algebraic retraction, plurisubharmonic function, projective alge- braic manifold, quasi-projective variety, Runge domain, Stein manifold. A.M.S. Classification 1985: 32E30, 32H20, 14C30 Table of contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
- line bundle
- projective algebraic
- compact subset
- nash algebraic
- kobayashi pseudodistance
- every relatively compact
- manifold
- ?0 ?
- subset ? ?