A posteriori error estimations of a coupled mixed and standard Galerkin method

icon

29

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

29

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur, Licence, Bac+2
A posteriori error estimations of a coupled mixed and standard Galerkin method for second order operators Emmanuel Creuse, Serge Nicaise Universite de Valenciennes et du Hainaut Cambresis LAMAV Institut des Sciences et Techniques de Valenciennes F-59313 - Valenciennes Cedex 9 France Emmanuel.Creuse, June 14, 2006 Abstract In this paper, we consider a discretization method proposed by Wieners and Wohlmuth [26] (see also [16]) for second order operators, which is a coupling between a mixed method in a sub-domain and a standard Galerkin method in the remaining part of the domain. We perform an a posteriori error analysis of residual type of this method, by combining some arguments from a posteriori error analysis of Galerkin methods and mixed methods. The reliability and efficiency of the estimator are proved. Some numerical tests are presented and confirm the theoretical error bounds. 1 Introduction Let us fix a bounded domain ? of R2, with a polygonal boundary. For the sake of simplicity we assume that ? is simply connected. The case of a multiply connected domain can be treated as in [12]. In this paper we consider the following second order problem: For f ? L2(?), let ? ? H10 (?) be the unique solution of div (A??) = ?f in ?, (1) where the matrix A ? L∞(?,R2?2) is supposed to be symmetric and uniformly positive definite.

  • div ? ?

  • priori error

  • crouzeix-raviart property

  • included into

  • all elements

  • universite de valenciennes et du hainaut cambresis

  • include standard

  • standard galerkin


Voir icon arrow

Publié par

Nombre de lectures

22

Langue

English

of
a
A posteriori error estimations coupled mixed and standard Galerkin for second order operators
EmmanuelCreus´e,SergeNicaise
method
Universite´deValenciennesetduHainautCambre´sis
LAMAV Institut des Sciences et Techniques de Valenciennes F-59313 - Valenciennes Cedex 9 France Emmanuel.Creuse,Serge.Nicaise@univ-valenciennes.fr
June 14, 2006
Abstract
In this paper, we consider a discretization method proposed by Wieners and Wohlmuth [26] (see also [16]) for second order operators, which is a coupling between a mixed method in a sub-domain and a standard Galerkin method in the remaining part of the domain. We perform an a posteriori error analysis of residual type of this method, by combining some arguments from a posteriori error analysis of Galerkin methods and mixed methods. The reliability and efficiency of the estimator are proved. Some numerical tests are presented and confirm the theoretical error bounds.
1 Introduction Let us fix a bounded domain Ω ofR2 For the sake of simplicity, with a polygonal boundary. we assume that Ω is simply connected. The case of a multiply connected domain can be treated as in [12]. In this paper we consider the following second order problem: ForfL2(Ω), let θH1(Ω) be the unique solution of 0
div (Arθ) =fin Ω,(1) where the matrixAL,R2×2) is supposed to be symmetric and uniformly positive definite.
1
Voir icon more
Alternate Text