A Kawamata Viehweg Vanishing Theorem on compact Kahler manifolds

icon

36

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

36

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur, Licence, Bac+2
A Kawamata-Viehweg Vanishing Theorem on compact Kahler manifolds Jean-Pierre Demailly?, Thomas Peternell?? ? Universite de Grenoble I, BP 74 ?? Universitat Bayreuth Institut Fourier, UMR 5582 du CNRS Mathematisches Institut 38402 Saint-Martin d'Heres, France D-95440 Bayreuth, Deutschland Abstract. We prove a Kawamata-Viehweg vanishing theorem on a normal compact Kahler space X : if L is a nef line bundle with L2 6= 0, then Hq(X,KX + L) = 0 for q ≥ dimX ? 1. As an application we complete a part of the abundance theorem for minimal Kahler threefolds: if X is a minimal Kahler threefold, then the Kodaira dimension ?(X) is nonnegative. 0. Introduction In this paper we establish the following Kawamata-Viehweg type vanishing theorem on a compact Kahler manifold or, more generally, a normal compact Kahler space. 0.1 Theorem. Let X be a normal compact Kahler space of dimension n and L a nef line bundle on X. Assume that L2 6= 0. Then Hq(X,KX + L) = 0 for q ≥ n? 1. In general, one expects a vanishing Hq(X,KX + L) = 0 for q ≥ n + 1 ? ?(L), where ?(L) is the numerical Kodaira dimension of the nef line bundle L, i.

  • reduced compact

  • semi-stable when

  • minimal kahler

  • nef

  • compact kahler

  • mkx ??


Voir icon arrow

Publié par

Nombre de lectures

16

Langue

English

AKawamata-ViehwegVanishingTheorem
oncompactKa¨hlermanifolds

Jean-PierreDemailly

,ThomasPeternell
⋆⋆

Universite´deGrenobleI,BP74
⋆⋆
Universita¨tBayreuth
InstitutFourier,UMR5582duCNRSMathematischesInstitut
38402Saint-Martind’He`res,FranceD-95440Bayreuth,Deutschland

Abstract.
WeproveaKawamata-Viehwegvanishingtheoremonanormalcompact
Ka¨hlerspace
X
:if
L
isaneflinebundlewith
L
2
6
=0,then
H
q
(
X,K
X
+
L
)=0
for
q

dim
X

1.Asanapplicationwecompleteapartoftheabundancetheorem
forminimalKa¨hlerthreefolds:if
X
isaminimalKa¨hlerthreefold,thentheKodaira
dimension
κ
(
X
)isnonnegative.

§
0.Introduction
InthispaperweestablishthefollowingKawamata-Viehwegtypevanishingtheorem
onacompactKa¨hlermanifoldor,moregenerally,anormalcompactKa¨hlerspace.
0.1Theorem.
Let
X
beanormalcompactKa¨hlerspaceofdimension
n
and
L
anef
linebundleon
X
.Assumethat
L
2
6
=0
.Then
H
q
(
X,K
X
+
L
)=0
for
q

n

1
.
Ingeneral,oneexpectsavanishing
H
q
(
X,K
X
+
L
)=0
for
q

n
+1

ν
(
L
),where
ν
(
L
)isthenumericalKodairadimensionofthenefline
bundle
L
,i.e.
ν
(
L
)isthelargestinteger
ν
suchthat
L
ν
6
=0.
Ofcourse,when
X
isprojective,Theorem0.1iscontainedintheusualKawamata-
Viehwegvanishingtheorem,butthemethodsofproofinthealgebraiccaseclearlyfail
inthegeneralKa¨hlersetting.Insteadweproceedinthefollowingway.Clearlywemay
assumethat
X
issmoothandbySerreduality,onlythecohomologygroup
H
n

1
isof
interest.Takeasingularmetric
h
on
L
withpositivecurvaturecurrent
T
withlocal
weightfunction
h
.By[Si74,De93a]thereexistsadecomposition
T
=
λ
j
D
j
+
G,
(
D
)
Xwhere
λ
j

1areirreducibledivisors,and
G
isapseudo-effectivecurrentsuchthat
G
|
D
i
ispseudo-effectiveforall
i
.Considerthemultiplieridealsheaf
I
(
h
).Weassociate
to
h
another,“upperregularized”multiplieridealsheaf
I
+
(
h
)bysetting
I
+
(
h
):=lim
I
(
h
1+
ε
)=lim
I
(1+
ε
)
ϕ.
ε

0
+
ε

0
+

2AKawamata-ViehwegVanishingTheoremoncompactKa¨hlermanifolds

Itisunknownwhether
I
(
h
)and
I
+
(
h
)actuallydiffer;inallknownexamplestheyare
equal.TheninSection2thefollowingvanishingtheoremisproved.
0.2Theorem.
Let
(
L,h
)
beaholomorphiclinebundleoveracompactKa¨hler
n
-fold
X
.Assumethat
L
isnefandhasnumericalKodairadimension
ν
(
L
)=
ν
>
0
,
i.e.
c
1
(
L
)
ν
6
=0
and
ν
ismaximal.Thenthemorphism
H
q
(
X,
O
(
K
X
+
L
)

I
+
(
h
))
−→
H
q
(
X,K
X
+
L
)
inducedbytheinclusion
I
+
(
h
)

O
X
vanishesfor
q>n

ν
.
ThestrategyoftheproofofTheorem0.2isbasedonadirectapplicationofthe
BochnertechniquewithspecialhermitianmetricsconstructedbymeansoftheCalabi-
Yautheorem.
Now,comingbacktotheprinciplesoftheproofofTheorem0.1,weintroducethe
divisor
X
D
=[
λ
j
]
D
j
.
ThenTheorem0.2yieldsthevanishingofthemapincohomology
H
n

1
(
X,

D
+
L
+
K
X
)
−→
H
n

1
(
X,L
+
K
X
)
.
Thuswearereducedtoshowthat
H
n

1
(
D,L
+
K
X
|
D
)=0,orduallythat
H
0
(
D,

L
+
D
|
D
)=0
.
Thisisnowdonebyadetailedanalysisofapotentialnon-zerosectionin

L
+
D
|
D
;
makinguseofthedecomposition(
D
)andofaHodgeindextypeinequality.
Thevanishingtheorem0.1ismostpowerfulwhen
X
isathreefold,andinthesecond
partofthepaperweapply0.1-orratheratechnicalgeneralization-toprovethe
followingabundancetheorem.
0.3Theorem.
Let
X
bea
Q
-GorensteinKa¨hlerthreefoldwithonlyterminalsingu-
larities,suchthat
K
X
isnef(aminimalKa¨hlerthreefoldforshort).Then
κ
(
X
)

0
.
ThistheoremwasestablishedintheprojectivecasebyMiyaokaandin[Pe01]for
Ka¨hlerthreefolds,withtheimportantexceptionthat
X
isasimplethreefoldwhich
isnotKummer.Recallthat
X
issaidtobe
simple
ifthereisnopropercompact
subvarietythroughaverygeneralpointof
X
,andthat
X
issaidtobeKummerif
X
is
bimeromorphictoaquotientofatorus.Soourcontributionhereconsistsinshowing
thatsuchasimplethreefold
X
with
K
X
nefhasactually
κ
(
X
)=0.Needlesstosaythat
amongallKa¨hlerthreefoldsthesimplenon-Kummerones(whichconjecturallydonot
exist)aremostdifficulttodealwith,sincetheydonotcarrymuchglobalinformation
besidesthefactthat
π
1
isfiniteandthattheyhaveaholomorphic2-form.
Thefirstmainingredientinourapproachistheinequality
K
X

c
2
(
X
)

0

§
1.Preliminaries3
foraminimalsimplyconnectedKa¨hlerthreefold
X
withalgebraicdimension
a
(
X
)=0.
PhilosophicallythisinequalitycomesfromEnoki’stheoremthatthetangentsheafof
X
is
K
X
-semi-stablewhen
K
2
X
6
=0resp.(
K
X

)-semi-stablewhen
K
2
X
=0;here
ω
isanyKa¨hlerformon
X
.Nowifthissemi-stabilitywithrespecttoadegenerate
polarizationwouldyieldaMiyaoka-Yauinequality,then
K
X

c
2
(
X
)

0wouldfollow.
HoweverthistypeofMiyoka-Yauinequalitieswithrespecttodegeneratepolarizations
iscompleteyunknown.Intheprojectivecase,theinequalityfollowsfromMiyaoka’s
genericnefnesstheoremandisbasedonchar.
p
-methods.Insteadweapproximate
K
X
(incohomology)byKa¨hlerforms
ω
j
.If
T
X
isstill
ω
j
-semi-stableforsufficiently
large
j
,thenwecanapplytheusualMiyaoka-Yauinequalityandpasstothelimit
toobtain
K
X

c
2
(
X
)

0.Otherwiseweexaminethemaximaldestabilizingsubsheaf
whichessentially(becauseof
a
(
X
)=0)isindependentofthepolarization.
Thesecondmainingredientistheboundedness
h
2
(
X,mK
X
)

1.If
K
2
X
6
=0,thisis
ofcoursecontainedinTheorem0.1.If
K
2
X
=0,weprovethisboundednessunderthe
additionalassumptionthat
a
(
X
)=0andthat
π
1
(
X
)isfinite(otherwisebyaresult
ofCampana
X
isalreadyKummer).Themainpointisthatif
h
2
(
X,mK
X
)

2,then
weobtain“many”non-splitextensions
0
−→
K
X
−→
E
−→
mK
X
−→
0
andweanalyzewhether
E
issemi-stableornot.Theassumptionon
π
1
isusedto
concludethatif
E
isprojectivelyflat,then
E
istrivialafterafinitee´talecover.
FromthesetwoingredientsTheorem0.3immediatelyfollowsbyapplyingRiemann-
Rochonadesingularizationof
X
.
TheonlyremainingproblemconcerningabundanceonKa¨hlerthreefoldsistoprove
thatasimpleKa¨hlerthreefoldwith
K
X
nefand
κ
(
X
)=0mustbeKummer.

§
1.Preliminaries
Westartwithafewpreliminarydefinitions.
1.1Definition.
Anormalcomplexspace
X
issaidtobeKa¨hlerifthereexistsa
Ka¨hlerform
ω
ontheregularpartof
X
suchthatthefollowingholds.Everysingular
point
x

X
admitsanopenneighborhood
U
andaclosedembedding
U

V
intoan
openset
U

C
N
suchthatthereisaKa¨hlerform
η
on
V
with
η
|
U
=
ω
.
1.2Remark.
Let
X
beacompactKa¨hlerspaceandlet
f
:
X
ˆ
−→
X
beadesingu-
larizationbyasequenceofblow-u

Voir icon more
Alternate Text