ENTROPY OF SEMICLASSICAL MEASURES IN DIMENSION

icon

41

pages

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

41

pages

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

ENTROPY OF SEMICLASSICAL MEASURES IN DIMENSION 2 GABRIEL RIVIÈRE Abstract. We study the high-energy asymptotic properties of eigenfunctions of the Laplacian in the case of a compact Riemannian surfaceM of Anosov type. To do this, we look at families of distributions associated to them on the cotangent bundle T ?M and we derive entropic properties on their accumulation points in the high-energy limit (the so-called semiclassical measures). We show that the Kolmogorov-Sinai entropy of a semiclassical measure µ for the geodesic flow gt is bounded from below by half of the Ruelle upper bound, i.e. hKS(µ, g) ≥ 1 2 ∫ S?M ?+(?)dµ(?), where ?+(?) is the upper Lyapunov exponent at point ?. 1. Introduction In quantum mechanics, the semiclassical principle asserts that in the high energy limit, one should observe classical phenomena. Our main concern will be the study of this property when the classical system is said to be chaotic. Let M be a compact C∞ Riemannian surface. For all x ?M , T ?xM is endowed with a norm ?.?x given by the metric over M . The geodesic flow gt over T ?M is defined as the Hamiltonian flow corresponding to the Hamiltonian H(x, ?) := ??? 2 x 2 .

  • lebesgue measure

  • arithmetic quantum

  • geodesic flow

  • flow gt over

  • semiclassical measure

  • kolmogorov-sinai entropy

  • distribution µ

  • nonpositive curvature


Voir icon arrow

Publié par

M
T M
t g
Z
1 +h ( ;g ) ()d ();KS
2 S M
+ ()
1 M C x2M T M k:kxx
t M g T M
2kkxH(x;) := 2
2~ H 2
~
2L (M)
2 j (x)j dx~
2~ 1 ~ 2 2
2~ = :~ ~
M
2~
2j (x)j dx ~ 0~
x
~
(a)~
2L (M) a(x;)
Z
(a) = a(x;)d (x;) :=h ; (a) i 2 :~ ~ ~ ~ L (M)~
T M
T M~
( )~k
2 ~ T Mkk
[T M =T M[Mf1g
0 [C (T M)
studyofthisiandRIVI?REpropimitertofythewhendierentheaclassicalessystemtistropsaidwhentomeasurebofepcquanhaotic.loLetthetheLaplacianbergeseologyawcompactyemeasures).bw,Riemannianbsurfacee.usFinorofallpreviouswillerconcernciatedmainyp,AnoOurlophenomena.eigeclassicalalueetheisasymptoticendoconwologyedKwith.aviornormparticobservinshouldtooneoflimit,needgivtenedbcalculus.ytsthethatmetricOpospacevyerinenergyol.yThedenegeoondesiceothewfamilieshighdotheformosvdescriberositioninLetthataassertsiistodenedLaplacianasondingtheofHamiltoniawneo,wthecorresptheondingSEMICLASSICALtov-SinaithethatHamiltoniantoprinciplemeanssemiclassicalbthethehanics,ndmecintumsystemquanstateInInoductionyIntre1.Hamiltonian.e.liftThisthelastThisquanactitotiyfactcorrespiondsprotouantheeclassicalopkineticso-calledenergytheinhigh-energytheforcaseableofaccumthecertainabsencemof.pwotenlifttial.isAsfolloany:yeobservtropicable,ethistquanthemtitdistributionsyatcanwbTevquangtizeddistributionviathepseudosurfacedierennotialincalculusvandythecompactquanbtumofopunceratorofcoorrespreigenresptheondingSupptothetofisonoinconp1atdenotetthewherect.onen2isepropergenceortionaleaktobtheaturalPlancINkOPYconstanentolmogoroathenasdtendsexpshoisThisthestudyingLaplaceasymptoticBeltramiehaopofeprobabilitrtoaatleoreactingtheonisvtheapunoWLy.erorderuppstud.theOurnumainnceresulttheconcernsothewinuencerstoftothethisclassicaltoHamiltoniancotangenbbundle.ehacanvioreonhievthethankssppseudoectraltas-alymptoticInpropthereertiesxofsthea.cedureMoreqpreciselytization,givoursmainanineratorterestsemiclassicalis(thetheonstudyphaseislwherethe.tse.ani.observnd,oinouulationbeirerauppclassRuellesythebwheresofThenhalfnaturalisaantoetheigenfunctionmeasureoftoythebwingwtitelothassosciatedtitoproptheeneigenderivvwaluebundlebcotangenfromon,toi.e.asso(1)ofoundedOpbokisewthis,oodesice.geottheThisforulaThisivisaequivoalenontspacetooftheandstudyesofwlargedistributionepigenandvealuescitof.eRiemannian.aAscasemeasureissequenceaorthonormalcompactnfRiemanniantmanifold,onsthethefamilycsemiclassicalondingatheformsvasdiscreteinsubs.eoseqhatuecorrespnsequencecdistributionseofthateigenfunctionstendsertiestovmin1usIfinniteyprop.high-energyOnestudynaturalWquestionAbstraisGABRIELtoDIMENSIONstudywtheconsider(vwforeak)wlitopmitsinducedofythenprobabilittopyonmeasureMEASURESofOFyofENTRthemeasure1k

~

1S M := (x;) :H(x;) = :
2
t
1 t t t8a2C (T M); U (a)U = (ag ) +O (~);tc ~ ~
{t~t 2U e

S M
2( ) L (M)k
S M
( )k pp
S M p
1]fp : 1 k ng npn
2j j dx
2T
1( + ) 0 02
20 T
2 2 2 = + + (T ) (T ) (T ) 1=2
2dT d 2
2d
M
Op(2)where,Aseopleyxedprodenoteseylthesemiclassicalquanensiontumonpropagatorsimilaryyanisfornthatergstatescture,.anPreciselythe,ypitesaexample,ysandthatconfor.xedcomptimes,pthetquantumtumG.evErgoolutionHecisconrelatedclosesttooftheasclassicalTheseevdesicolutiontheyundertumthethegeHoothisdesicfact,oaw.isFvromt,this,dierenitacan.boeitdeducedHecthat,,theistheiQn[23].vforarianoftnotunderthetheresultgeoresultdesictoohaos,w.toOne(anaturalofquestionprototaskaiure.squanwhathemeasuresnaturallysuppBi?vreorteddicitontizedydeertvproptumareoptimisticinsequencefactmesemiclassical,measures.onInmeasurequanNonnenmactumwcitshaos,singularonecalculus,studiesscthisUsingquestionlimitwhencularthetoclassicalcasebanehathisvioredisthatsaidonetoybconstructioneectendshaotic.mAnrstArithmetiresulttuminitthis,directionedhassequencebeeenLaplacianfoundsurface,bdoyergesShnirelmanesgue[28],surface.Zelditcactuallyhositiv[31],wColinIndetheVtumerdi?rey[1to0]:moTheoremcat1.1.ypicalLolicetasuvsEgorosystemsthepropasthebweofanaovrthonormalbbusingasisandofofwndicitknoFanalysis,andmiclassicalvsetumcpropomptheosemapdevofFeigenfunctionsherofthatthetheLErgoaplacian.toM.orconstructedeeigenfunctionsover,ergessupptoseLebthewngeDiracoanddesicLebowbonauremalsoothatfrsplitisinerpgoesgueditincts,withpprpseudoespteppctclassicaltocalledLiouvilandlermeppa-limisurinnite.nThen,geotherthereepexistsviewamsubsebquencyeRudnicresultsequenceanothereer,ArithmeticvErgoMoreoRecenbundlegeneralizedofhigherdensiprotthatyofone(thatrcofonvercogesjetothethecLiouviluanleUniquemdiceyasurPreciselyeheonvtthatcotangenaunitofasktheeigenfunctionstendsthetooninarithmeticnity.depByes`densitthatyvone',towLebemeasuremeanthethatThisoniscarriedtheispthateandtoOpardszationconjecture.tiorderquanunderstandthephenomenonofquanhoiceccmantendsptostartedonestudyasythedelstendsthetomapinnittyh.erbThisautomorphismtheoremrestates).that,dynamicalinystemsthevidecasewithofdynamicalanertiesergoodicgeogeoodesiconomanifoldw,negativalmostcurvallteigenfunctionsMoreoconcer,encantrateeontizedtheWLiouvilleformalismmetasurquestioneQuaninErgotheyhigharises.energyorlimit.BouzouinaThisdephenomenonproisedcalledQuanquanErgotumyergoertdicitforyquanandcathas[7].manwyer,extensions.Bi?vre,TheaureQuanNonnenmactumproUniqueedEringcase,oQuandicitUniqueydicitConjectureisstatesothat[15]theInsettheyofasemiclassicalofmeasuresthatshouldvbtoeyreducedprobabilitoisthethatLiwhereouvshoithellemeasuremeasureeinLebthethecaseesgueofonAnosocanonF,andaherfpromilyedsympleifmatrices),etheretheco-isotropicmeasureintoarianpureunderoinendLebcatandorconhasuoustonencittumalErgotiitLeb[ofMoreo,er,hethefactscase,standardshomeasure.edsemiwLebcanissemiclassicalaequalinLebaotithehsubmanifold.SucStatementofamaiyresult.[16].recenipapthe[2],ofAnandesicandw,herisconcernedarithmetictheoinofofloonofproblegenfunctionsandOphasproeeninvcasebtheKurlbyanddels.ktriedforunderstandofviakKeigenfunctions,v-SinaihastropQuan.Uniquepapdicitis[21].thetlyers,KelmerLindenstraussthisproinvdimeanddvadparticinucaseltoarasfRIVI?REovgeofordesicgenericoawof[26].cticThiseitherquestionexistsstillsubmanifoldremainsvwidetlythe2open.mapInonefact,ArithmeinitheQuancUniqueasdiceyof20].negativveincurvrstature,hetherewarethatmaneyconstructmeasuresmeasureintovesguearianntisotropicunder1.1.thetgeothedesicnoInw:tforersexample,[5],theretharamanexistsNonnenmacangotinnitwithystudyoftheclosedcalizationgeoeidesicson(eacashtheofofthemtocarryingmonaturallyTheyantoinitvthearianolmogorotenmeasure).yInThisrecenertinpapsameM
S M

u 1J () := det dg ;u 1jE (g )
u 1 1E (g ) g
1M C
t(g )t
Z
1 u h ( ;g ) logJ ()d () ;KS

Voir icon more
Alternate Text