41
pages
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe et accède à tout notre catalogue !
Découvre YouScribe et accède à tout notre catalogue !
41
pages
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Publié par
Nombre de lectures
8
Publié par
M
T M
t g
Z
1 +h ( ;g ) ()d ();KS
2 S M
+ ()
1 M C x2M T M k:kxx
t M g T M
2kkxH(x;) := 2
2~ H 2
~
2L (M)
2 j (x)j dx~
2~ 1 ~ 2 2
2~ = :~ ~
M
2~
2j (x)j dx ~ 0~
x
~
(a)~
2L (M) a(x;)
Z
(a) = a(x;)d (x;) :=h ; (a) i 2 :~ ~ ~ ~ L (M)~
T M
T M~
( )~k
2 ~ T Mkk
[T M =T M[Mf1g
0 [C (T M)
studyofthisiandRIVI?REpropimitertofythewhendierentheaclassicalessystemtistropsaidwhentomeasurebofepcquanhaotic.loLetthetheLaplacianbergeseologyawcompactyemeasures).bw,Riemannianbsurfacee.usFinorofallpreviouswillerconcernciatedmainyp,AnoOurlophenomena.eigeclassicalalueetheisasymptoticendoconwologyedKwith.aviornormparticobservinshouldtooneoflimit,needgivtenedbcalculus.ytsthethatmetricOpospacevyerinenergyol.yThedenegeoondesiceothewfamilieshighdotheformosvdescriberositioninLetthataassertsiistodenedLaplacianasondingtheofHamiltoniawneo,wthecorresptheondingSEMICLASSICALtov-SinaithethatHamiltoniantoprinciplemeanssemiclassicalbthethehanics,ndmecintumsystemquanstateInInoductionyIntre1.Hamiltonian.e.liftThisthelastThisquanactitotiyfactcorrespiondsprotouantheeclassicalopkineticso-calledenergytheinhigh-energytheforcaseableofaccumthecertainabsencemof.pwotenlifttial.isAsfolloany:yeobservtropicable,ethistquanthemtitdistributionsyatcanwbTevquangtizeddistributionviathepseudosurfacedierennotialincalculusvandythecompactquanbtumofopunceratorofcoorrespreigenresptheondingSupptothetofisonoinconp1atdenotetthewherect.onen2isepropergenceortionaleaktobtheaturalPlancINkOPYconstanentolmogoroathenasdtendsexpshoisThisthestudyingLaplaceasymptoticBeltramiehaopofeprobabilitrtoaatleoreactingtheonisvtheapunoWLy.erorderuppstud.theOurnumainnceresulttheconcernsothewinuencerstoftothethisclassicaltoHamiltoniancotangenbbundle.ehacanvioreonhievthethankssppseudoectraltas-alymptoticInpropthereertiesxofsthea.cedureMoreqpreciselytization,givoursmainanineratorterestsemiclassicalis(thetheonstudyphaseislwherethe.tse.ani.observnd,oinouulationbeirerauppclassRuellesythebwheresofThenhalfnaturalisaantoetheigenfunctionmeasureoftoythebwingwtitelothassosciatedtitoproptheeneigenderivvwaluebundlebcotangenfromon,toi.e.asso(1)ofoundedOpbokisewthis,oodesice.geottheThisforulaThisivisaequivoalenontspacetooftheandstudyesofwlargedistributionepigenandvealuescitof.eRiemannian.aAscasemeasureissequenceaorthonormalcompactnfRiemanniantmanifold,onsthethefamilycsemiclassicalondingatheformsvasdiscreteinsubs.eoseqhatuecorrespnsequencecdistributionseofthateigenfunctionstendsertiestovmin1usIfinniteyprop.high-energyOnestudynaturalWquestionAbstraisGABRIELtoDIMENSIONstudywtheconsider(vwforeak)wlitopmitsinducedofythenprobabilittopyonmeasureMEASURESofOFyofENTRthemeasure1k
~
1S M := (x;) :H(x;) = :
2
t
1 t t t8a2C (T M); U (a)U = (ag ) +O (~);tc ~ ~
{t~t 2U e
S M
2( ) L (M)k
S M
( )k pp
S M p
1]fp : 1 k ng npn
2j j dx
2T
1( + ) 0 02
20 T
2 2 2 = + + (T ) (T ) (T ) 1=2
2dT d 2
2d
M
Op(2)where,Aseopleyxedprodenoteseylthesemiclassicalquanensiontumonpropagatorsimilaryyanisfornthatergstatescture,.anPreciselythe,ypitesaexample,ysandthatconfor.xedcomptimes,pthetquantumtumG.evErgoolutionHecisconrelatedclosesttooftheasclassicalTheseevdesicolutiontheyundertumthethegeHoothisdesicfact,oaw.isFvromt,this,dierenitacan.boeitdeducedHecthat,,theistheiQn[23].vforarianoftnotunderthetheresultgeoresultdesictoohaos,w.toOne(anaturalofquestionprototaskaiure.squanwhathemeasuresnaturallysuppBi?vreorteddicitontizedydeertvproptumareoptimisticinsequencefactmesemiclassical,measures.onInmeasurequanNonnenmactumwcitshaos,singularonecalculus,studiesscthisUsingquestionlimitwhencularthetoclassicalcasebanehathisvioredisthatsaidonetoybconstructioneectendshaotic.mAnrstArithmetiresulttuminitthis,directionedhassequencebeeenLaplacianfoundsurface,bdoyergesShnirelmanesgue[28],surface.Zelditcactuallyhositiv[31],wColinIndetheVtumerdi?rey[1to0]:moTheoremcat1.1.ypicalLolicetasuvsEgorosystemsthepropasthebweofanaovrthonormalbbusingasisandofofwndicitknoFanalysis,andmiclassicalvsetumcpropomptheosemapdevofFeigenfunctionsherofthatthetheLErgoaplacian.toM.orconstructedeeigenfunctionsover,ergessupptoseLebthewngeDiracoanddesicLebowbonauremalsoothatfrsplitisinerpgoesgueditincts,withpprpseudoespteppctclassicaltocalledLiouvilandlermeppa-limisurinnite.nThen,geotherthereepexistsviewamsubsebquencyeRudnicresultsequenceanothereer,ArithmeticvErgoMoreoRecenbundlegeneralizedofhigherdensiprotthatyofone(thatrcofonvercogesjetothethecLiouviluanleUniquemdiceyasurPreciselyeheonvtthatcotangenaunitofasktheeigenfunctionstendsthetooninarithmeticnity.depByes`densitthatyvone',towLebemeasuremeanthethatThisoniscarriedtheispthateandtoOpardszationconjecture.tiorderquanunderstandthephenomenonofquanhoiceccmantendsptostartedonestudyasythedelstendsthetomapinnittyh.erbThisautomorphismtheoremrestates).that,dynamicalinystemsthevidecasewithofdynamicalanertiesergoodicgeogeoodesiconomanifoldw,negativalmostcurvallteigenfunctionsMoreoconcer,encantrateeontizedtheWLiouvilleformalismmetasurquestioneQuaninErgotheyhigharises.energyorlimit.BouzouinaThisdephenomenonproisedcalledQuanquanErgotumyergoertdicitforyquanandcathas[7].manwyer,extensions.Bi?vre,TheaureQuanNonnenmactumproUniqueedEringcase,oQuandicitUniqueydicitConjectureisstatesothat[15]theInsettheyofasemiclassicalofmeasuresthatshouldvbtoeyreducedprobabilitoisthethatLiwhereouvshoithellemeasuremeasureeinLebthethecaseesgueofonAnosocanonF,andaherfpromilyedsympleifmatrices),etheretheco-isotropicmeasureintoarianpureunderoinendLebcatandorconhasuoustonencittumalErgotiitLeb[ofMoreo,er,hethefactscase,standardshomeasure.edsemiwLebcanissemiclassicalaequalinLebaotithehsubmanifold.SucStatementofamaiyresult.[16].recenipapthe[2],ofAnandesicandw,herisconcernedarithmetictheoinofofloonofproblegenfunctionsandOphasproeeninvcasebtheKurlbyanddels.ktriedforunderstandofviakKeigenfunctions,v-SinaihastropQuan.Uniquepapdicitis[21].thetlyers,KelmerLindenstraussthisproinvdimeanddvadparticinucaseltoarasfRIVI?REovgeofordesicgenericoawof[26].cticThiseitherquestionexistsstillsubmanifoldremainsvwidetlythe2open.mapInonefact,ArithmeinitheQuancUniqueasdiceyof20].negativveincurvrstature,hetherewarethatmaneyconstructmeasuresmeasureintovesguearianntisotropicunder1.1.thetgeothedesicnoInw:tforersexample,[5],theretharamanexistsNonnenmacangotinnitwithystudyoftheclosedcalizationgeoeidesicson(eacashtheofofthemtocarryingmonaturallyTheyantoinitvthearianolmogorotenmeasure).yInThisrecenertinpapsameM
S M
u 1J () := det dg ;u 1jE (g )
u 1 1E (g ) g
1M C
t(g )t
Z
1 u h ( ;g ) logJ ()d () ;KS